
A Table-Based Application-Specific Prefetch Engine
for Object-Oriented Embedded Systems

Saahin Hessabi, Mehdi Modarressi, Maziar Goudarzi, Hani Javanhemmat
Computer Engineering Department

Sharif University of Technology
Tehran, Iran.

hessabi@sharif.edu, modarressi@ce.sharif.edu, goudarzi@sharif.edu, javan@ce.sharif.edu

Abstract—A table-based application-specific data prefetching
mechanism is presented in this paper. This mechanism is
proposed to improve the performance of the application specific
instruction-set processors (ASIP) we develop customized to an
object-oriented application. In this approach, we divide the data
accesses of a class method into two conditional and unconditional
parts. We supply the prefetch engine with the static information
about each part to prefetch all data fields of an object required
by a class method when the class method is invoked. Effective
management of memory access patterns by dividing them based
on the method to which they belong and storing the access
information of nested loops using a simple structure are the
merits of the proposed mechanism. In addition, by adding a
prefetch flag to cache blocks, we eliminate a large number of
prefetch related tag comparisons. The results show that the
proposed mechanism reduces the cache miss ratio and prefetch
related tag comparisons on average by 66% and 21%
,respectively.

I. INTRODUCTION
Data prefetching is a basic technique for enhancing cache

performance [1]. Although considerable research has been
concentrated on prefetching techniques and many prefetching
methods have been developed, since the memory-processor
speed gap continues to increase, there is continuing demand for
improving prefetching methods.

In designing a prefetching mechanism, it is important to
pay attention to its impact on processor energy consumption.
Cache memories may consume up to 50% of processor energy
[2], [3]. Moreover, using some hardware prefetching
mechanism will increase the memory system energy
consumption by 30% [4]. However, in embedded systems
where the hardware and the running application are specific
and remain unchanged during system life time, some system
attributes can be used to improve the prefetching performance
and power consumption.

The application-specific processors we use in this research
are introduced in Section 2. These processors are specifically
designed to suit object-oriented applications and are
synthesized from an object-oriented high-level specification
using the ODYSSEY synthesis tool [5]. Class methods of the
object-oriented specification are either implemented in
software, as software routines, or in hardware, as hardware
functional units. As a result, the processor is composed of a

processor core, which executes the software routines, along
with a number of hardware functional units.

We have already presented an application-specific data
prefetching mechanism for these processors [6]. In the
proposed mechanism, the cache controller prefetches all data
fields of an object which are unconditionally accessed by a
class method, when the class method is invoked. This approach
adapts the prefetching mechanism to the running application.
The simulation results of this mechanism using some object-
oriented benchmarks show that on average, this method
reduces the miss ratio by 70%.

In this paper, we propose a table-based implementation for
that prefetching mechanism. We also customize this table-
based structure for stride-prefetching in array-based accesses.
Stride prefetching detects sequences of accesses that differ by a
constant value and prefetches the addresses that continue the
stride pattern. These methods often apply a table to store the
most recent stride information [7] [8] [9].

Our approach divides the class method data accesses into
two conditional and unconditional parts and takes advantage of
static information about both parts to prefetch the required data
items. A number of mechanisms such as the one presented in
[4] apply compiler supplied static information to improve the
performance and reduce the prefetching energy consumption.
[4] uses a combined stride and pointer prefetching and supplies
it with some static information such as stride information and
the suitable prefetching method (stride or pointer) for each
load/store instruction. It reduces the prefetch related energy
overhead by 40%. Some other software-hardware cooperative
prefetching approaches such as Data Prefetch Controller in
[10], prefetching array in [11], User-Level Memory Thread in
[12], Group Prefetching in [13], and Guided Region
Prefetching in [14] apply the information about the running
application to improve the prefetching performance. The
prefetch structure we propose in this paper is simpler than the
structures used in other software-hardware cooperative
mechanisms while we can effectively detect the access patterns
generated by class methods and prefetch the required data
items before the actual request for them.

Although prefetching improves the cache performance, it
increases the cache energy consumption. The main source of
the prefetch-related energy overhead (especially in set-
associative caches) is the cache lookups related to prefetching.

Figure 1. The internal architecture of our ASIPs

In set-associative caches, all the ways in a set are accessed
in parallel although at most only one way contains the desired
data. Since prefetch engines search the cache for a data before
prefetching it, prefetching results in a large number of parallel
tag comparisons and increases the cache power overhead. To
alleviate this effect, we can add a small direct-mapped cache
between the processor and the L1 cache to keep the prefetched
data items. “Filter cache” [15] proposes a similar approach
which stores the most recently used data items of the cache (but
not the prefetched data) in a small direct-mapped cache.
However, in order to eliminate moving data items between L1
cache and the prefetch cache, we propose an alternative way by
adding a prefetch flag to every cache block in order to specify
the recently prefetched (or hit during prefetch lookup) cache
blocks. During the cache lookup, the cache controller first
accesses the way specified by the prefetch flag (if any) and
then searches the other ways if the first access results in a miss.
This method is similar to the way-prediction methods proposed
for power reduction in set-associative cache memories [16]
[17] [18]. However, since we have associated it with prefetched
data items, we can achieve higher hit ratios on the first phase
accesses. In following sections, we will explain the details of
our mechanism.

The structure of the paper is as follows. In Section 2, we
introduce our embedded system architecture and present our
prefetching mechanism. Section 3 contains the experimental
results and finally, Section 4 concludes this paper.

II. DATA PREFETCHING MECHANISM

A. Embedded Processor Architecture

The embedded system architecture that we follow in this
research is depicted in Figure 1 [19]. The system is a Network-
on-Chip (NoC) architecture that consists of a processor core
along with a set of hardware functional units (FU). The
architecture is specifically designed to suit object-oriented
(OO) applications. A typical OO application defines a library
of classes, instantiates objects of those classes, and invokes
methods of those objects. Our implementation approach for
each of these three major components of an OO application is
described below. For presentational purposes, we follow the
C++ syntax in describing each component.

• Class library: Each class consists of variable declarations
and method definitions. Variable declarations are compile-time
information and do not require a corresponding component in
implementation. Methods of the OO class library are either
implemented in software (e.g. A::g() and C::f() in the
“Instruction Memory” box in Figure 1) or in hardware (e.g.
A::f() and B::f() FUs below the “Processor core” box). The
execution of a hardware-implemented method takes multiple
clock cycles and the method often follows the memory access
pattern of its high-level description. However, hardware-
implemented methods are several times faster than their
software-implemented equivalents.

• Object instantiations: these are specified in the main()
function. A memory portion should be reserved for each
instantiated object to store the values of its data items. This
memory portion is allocated in a data memory (the gray box at
the left-hand side of Figure 1, called OMU: Object
Management Unit) that is accessible to the processor core as
well as all FUs.

• Method invocations: the sequence of method invocations
is specified in the main() function of the application. The
executable code of this function comprises another part of the
instruction memory (see Figure 1).The processor core starts by
reading the instructions specified in the main() function of the
application. Whenever a method call instruction is read, the
corresponding implementation is resolved and invoked. This
may result in calling a software routine (e.g. C::f() in Figure 1)
or activating an FU (e.g. A::f()). Each method implementation
(be it in hardware or software) can also call other methods.

Since methods may be implemented in hardware as well as
in software, new techniques are required to efficiently dispatch
method-calls among method implementations. To achieve this
goal, we view each method call as a network packet. Each
method call is identified by a called method, a called object and
the parameters of the call. Therefore, each packet includes
three fields named mid, oid and params to respectively
represent the called method number, the called object number
and the call parameters. It also contains the mid of the caller
method as the destination of return values. The numbers
allocated to methods and objects are assigned such that routing
the packet on the on-chip network corresponds to dispatching
the call to the appropriate called method irrespective of the
caller and called methods being in software or hardware [19]. If
the invoked method is implemented in hardware as a functional

unit, the FU extracts the input parameters from the packet and
starts execution. If the method is implemented in software, the
processor core gets the packet and executes the method. The
invoked method may also need to call other methods. During
execution, the method may need to access some data fields of
its corresponding object. The method requests the data by
sending the oid and offset to the OMU. The OMU maps the oid
and offset to a physical address and sends the corresponding
data to the method.

When a method execution completes, the called method
sends another packet over the same on-chip network to the
caller method containing some fields such as return values.
More details about this architecture can be found in [5], [19]
and [20].

B. The Proposed Data Prefetching Mechanism
In previous section, we introduced the architecture of the

object-oriented ASIPs. The OMU in our ASIP architecture also
contains a data cache and controls it to accelerate data accesses.
The cache controller monitors the network and extracts the
called method and called object identifiers upon a method
invocation. Thus, the cache controller can be aware of the
currently called method and also aware of the object on which
the method should work. It is also aware of the other part of the
data addresses requested by a method (i.e. the data field offsets)
by keeping them in a prefetch table. These data field offsets can
be obtained by a static analysis of method codes and also
profiling method codes using some reasonable benchmarks.
Owing to the fact that class methods may be called on different
objects, but the unconditionally accessed data fields of the
called object are the same for all invocations, the cache
controller being aware of calling a method on an object, can
prefetch the unconditionally-accessed data fields of the called
object to the cache. In our previous work, we simulated this
approach on some object-oriented benchmarks and showed that
it can reduce the miss ratio by about 70% [6].

Since array-based structures are the most common data
structures in embedded systems, especially in image and voice
processing and wireless applications [21], we focus on the
stride prefetching [7]. Nevertheless, our mechanism is also able
to prefetch scalar data items.

We divide the data accesses of a class method into two
unconditional and conditional accesses. The unconditional
accesses happen in the same way every time a method is
invoked. The conditional accesses (such as data accesses in the
body of an if-then-else statement or in a loop that accesses
different elements of an array based on a variable value) take
place based on the input parameters and the run-time behavior
of the program. Figure 2 illustrates an example method code. In
this figure, the first and the fourth loops are the unconditional
access parts of method f(). On the other hand, since the second
and the third loops access different elements of the arrays b and
d based on the input parameter of the method, these loops form
the conditional access parts of the method. Arrays a, b, c and d
are the data members of class cls and N is a constant value. For
the unconditionally accessed data fields, we use a table to keep
their offsets. The table keeps the starting and stopping offsets
and the stride of these access patterns (see below).

Figure 2. Pseudo code of a class method. The first and fourth loops generate
unconditional access patterns while the second and third loops generate

conditional access patterns

Figure 3. The structure of the proposed prefetch table

Figure 4. An entry of the History Table

In the conditional data accesses in Figure 2, the start offset
of the accesses depends on run-time conditions. However, even
these accesses may still follow a constant stride. To support
this type of conditional access patterns (with constant stride),
we store the expected stride of them in prefetch table. The
structure of our prefetch table is depicted in Figure 3. This
structure has an Index Table which is indexed by the called
method identifier (mid). The entries in the Index Table contain
pointers into another table, History Table, which holds the
memory access information of class methods.

Each entry of the History Table depicted in Figure 4 has
some fields. The Dyna field is a dynamic field and stores the
run-time information of the access patterns, while the other
fields contain the static information provided before synthesis.

The T field determines the type of an entry. If T=0, the entry is
used to prefetch a scalar data and holds a single offset in the
Start field. If T=1, the Start field is the start offset of an
unconditional access pattern. In this case, the Stride, Degree
and Dyna fields keep the stride, the prefetch degree and the last
prefetched offset of this unconditional access pattern,
respectively. If T=2, the Stride field holds the expected stride
for a conditional access pattern; The other fields are empty in
this case. If T=3, the entry contains a pointer to another entry
of the History Table. Accessing a pointer entry, if the Dyna
field of the entry is greater than 0, the cache controller
decreases the Dyna field by one and initiates prefetching
according to the entry pointed by the Start field of the current
entry. Here, the Dyna field acts as a loop counter and we use
the Degree field to keep its initial value. The pointer entries are
useful for prefetching the data items in nested loops. By using
the pointer entries, we can simulate the nested loops and
exactly follow their access patterns. By exactly following the
access patterns of the methods, we can eliminate (or reduce)
the cache pollution problem. The number of iterations of a loop
generated by a pointer entry is stored in its Degree field and
equals to the number of iterations of the corresponding loop in
the application. The use of pointer entries enables us to store
the access patterns of nested loops using a very simple
structure. This is a major advantage of this table structure.

If the C field is set, the current and the next entries should
be processed (and their addresses be prefetched)
simultaneously. This is useful for handling the loops that access
more than one array. In addition to the mentioned fields, the S
field determines the end of the History Table entries related to
a method.

As an example, five History Table entries are used to keep
the access information of the loops in the pseudo code depicted
in Figure 2. Upon invocation of the method f()To simulate the
loop encircling the loops 3 and 4, we insert a pointer entry after
the entry corresponding to loop 4. This pointer entry generates
a loop through the entries related to the loops 3 and 4 and lets
them prefetch N elements of their corresponding array at each
iteration.

Unconditional data accesses can be easily recognized by
their starting and stopping addresses; i.e., detecting the requests
for starting and stopping addresses of an unconditionally
accessed part determines the time when we should prefetch the
unconditionally accessed data items according to the table. The
cache controller uses the expected stride of a conditional access
pattern to detect its start and uses either the first address of the
next pattern (if the next pattern is an unconditional pattern) or
the expected stride for the next pattern (if the next pattern is
conditional) to detect its stop.

Since we focus on the data accesses of a single class
method (and not the entire program) and each method contains
a limited number of loops (and thus access patterns), we can
often effectively manage data access patterns and divide them
into conditional and unconditional parts and store the access
information in the table. Moreover, by dividing data access
patterns based on the methods to which they belong, detecting
the access patterns (in order to initialize and stop prefetching)
can be done more precisely at run-time.

Although the table cannot store the information of all
access patterns, we can encode and store the access information
of the access patterns generated by most of the common loop
configurations. For more complex loops one can apply some
algorithms to convert them into simpler patterns [21], [22].
Moreover, the irregular access patterns (for example the access
patterns with variable stride) can be stored using the scalar
entries in the table.

C. Reducing Prefetch Related Tag Operations
As mentioned before, accessing N data arrays and N tag

arrays per cache access (where N is the associativity degree of
the cache) is the main source of power consumption in set-
associative cache memories. Since prefetch engines search the
cache for a data before prefetching it, using a prefetch
mechanism increases the number of tag comparisons, and thus
the power consumption of the cache.

As an approach to reducing the prefetch related tag
comparisons, one can add a small direct-mapped prefetch cache
between the CPU and the L1 cache to keep the prefetched data
items. This is similar to the filter cache idea [15] which keeps
the most recently used data in such a direct-mapped cache.

However, to eliminate moving cache blocks between the L1
and the prefetch cache, we implement this prefetch cache
within the L1 cache by using a prefetch flag for each way
within a set. When we prefetch a block to the cache or when
the lookup operation before prefetching hits the cache, we
specify the way which contains the block by setting its prefetch
flag. During cache lookup operation within a cache set, the
cache controller first searches the way specified by the prefetch
flag and then searches the other ways of the set if the first
search does not hit the cache. The cache controller resets the
prefetch flag, if the way specified by the prefetch flag does not
contain the requested data. In addition, upon prefetching a new
data into a set, we reset the prefetch flag of other ways within
the set.

Like other way-prediction approaches, this approach leads
to a two phase access and can potentially increase the cache
access time. However, as we will see in the next section, since
we only use the prefetch flag for the recently prefetched data
which are very likely to be accessed after prefetching, most of
the requests hit the cache at the first phase. As a result, this
method effectively reduces the number of prefetch related tag
operations while does not have a big effect on the cache access
time.

Unlike most way-prediction approaches, however, in this
approach, we only apply two phase access in the sets whose at
least one prefetch flag is set. The cache performs the traditional
parallel tag operations if no prefetch flag in the accessed set is
raised.

In the next section we evaluate the proposed methods on
some object-oriented ASIPs synthesized for real world
applications.

TABLE I. THE CHARACTRICTICS OF THE BENCHMARKS

 Benchmark Input Parameter No. of Memory
References

No. of class
methods(Functional Units)

JPEG Encoder A 320×240 bitmap picture 5,733,229 17
JPEG Decoder A 320×240 jpeg picture 4,632,957 40
MPEG Decoder A 128x128x24b ppm file 4,927,940 97
V44 Two 32 kb text files 14,219,719 24

Sound Recorder A random sequence of recording and
playing .wav files 8,203,047 27

TABLE II. THE MISS RATIO VS. THE CACHE SIZE FOR DIFFERENT PREFETCHING SCHEMES

III. EXPERIMENTAL RESULTS

The prefetching mechanism is implemented in five ASIPs.
We have chosen these applications as benchmarks since we did
not find any publicly available C++ benchmark describing an
embedded system. The characteristics of the ASIPs are shown
in Table I. The JPEG decoder and encoder are described in
[23]. Although both of these programs work on JPEG files,
their different access patterns allow us to use them as two
different benchmarks. The V44 is a decoder of the modem
compression protocol. The MPEG benchmark is an MPEG
decoder described in [24]. The Sound Recorder is a sound
recorder controller designed according to a case study in [25].
These programs have been synthesized by our synthesis tool
[5]. The output of this tool is an object-oriented ASIP in the
synthesizable subset of SystemC which contains a processing
core, some functional units and a network which connects all
these processing elements (see Section 2.1). Since our
prefetching mechanism is independent of the implementation
type of the methods (hardware or software) we synthesized all
class methods of the benchmarks into hardware functional
units. The cache is added to the SystemC code of the
synthesized ASIPs and some counters in the cache collect the
desired information when the ASIPs run the main function of
the applications.

 The miss ratio of the benchmarks in absence and presence
of the proposed prefetching mechanism for various cache sizes
are illustrated in Table II.

 In order to compare the proposed prefetching mechanism
with another mechanism, we also present the results for a
simple stride prefetching approach which monitors the data
access patterns generated by the methods and starts prefetching
upon detecting a stride. In order to detect a stride, this simple
strides prefetching approach compares consecutive addresses
generated by the processor. Regarding the results presented in
Table II, the proposed prefetching method enhances the data
cache behavior and causes the miss ratio to reduce on average
by 66%. As a result, we can get a higher hit ratio in a cache
with a given size or can get a desired hit ratio by a smaller
cache. This property is specifically useful in embedded systems
due to the limited cache size in such systems.

Table III displays the number of tag comparisons during the
execution of each benchmark in a 4-way set associative cache
with and without applying the prefetch flag. The cache size
and block size are 8K and 8 words, respectively.

If we do not use the prefetch flag, accessing a prefetched
data item involves 4 tag comparisons before prefetching and 4
comparisons each time the prefetched data is requested. In the
presence of our prefetch flag scheme, however, since accessing
a prefetched data before resetting the prefetch flag ideally
needs only one tag comparison, the prefetch flag can reduce the
number of tag comparisons for prefetched data and alleviate the
effect of additional tag comparisons caused by prefetching.

Table III shows that the prefetch flag reduces the tag
operations on average, by 21%. This reduction in the tag
operations, leads to reduction in prefetching power overhead.

Cache Size 8 K 4 K 2 K

Benchmark No
Prefetching

Our
Proposed

Prefetching

Simple
Stride

Prefetching

No
Prefetching

Our
Proposed

Prefetching

Simple
Stride

Prefetching

No
Prefetching

Our
Proposed

Prefetching

Simple
Stride

Prefetching
JPEG Decoder 0.11 0.02 0.02 0.14 0.05 0.09 4.90 0.98 2.04
JPEG Encoder 0.46 0.09 0.15 2.98 0.52 0.97 6.21 0.34 1.23
MPEG Decoder 4.50 1.06 1.89 5.04 1.94 2.75 10.79 4.54 6.98
V44 1.41 0.38 0.54 1.58 0.48 0.56 2.83 0.63 0.84
Sound Recorder 6.61 2.90 3.11 11.90 3.22 5.89 13.09 3.68 7.09

TABLE III. NUMBER OF TAG COMPARISONS WITH AND WITHOUT USING
PREFETCH FLAG

Benchmark

of tag
comparisons

without
prefetch flag

of tag
comparisons using

prefetch flag

Tag
comparison
reduction

JPEG Encoder 33,216,280 25,886,137 22%

JPEG Decoder 24,845,672 21,396,370 13%

MPEG Decoder 27,596,464 18,063,752 34%
V44 79,630,426 61,020,008 23%
Sound Recorder 46,802,764 39,829,511 15%

TABLE IV. THE NUMBER OF REQUESTS THAT HIT/MISS THE CACHE AT
THE FIRST PHASE

Cache size=8 kb
Benchmark

One-phase
accesses

Two-phase
accesses

One-phase hit
ratio

JPEG Encoder 5,327,245 197,134 96%
JPEG Decoder 4,430,970 201,987 95%
MPEG Decoder 4,702,425 225,515 96%
V44 14,015,025 204,694 98%
Sound Recorder 8,101,572 101,475 99%

Although this approach reduces the number of tag
operations for prefetched data, it increases the access latency, if
an address does not hit the cache at the first phase. Table IV
presents the number of one phase and two phase accesses in the
experiments. The results show that on average, 97% of
accesses hit the cache at the first phase. The cache access is
done in one phase when either the way determined by the
prefetch flag contains the requested data or none of the prefetch
flags in a set are set (all ways are accessed in parallel). The fact
that we only use the prefetch flag for the prefetched data
(which are very likely to be accessed after prefetching) results
in a high hit ratio at the first phase. This first-phase hit ratio is
larger than the first-phase hit ratios obtained by previous way-
prediction mechanisms [16][17]. The details about the area
overhead of the proposed prefetch engine can be found in [27].

IV. CONCLUSIONS
In this paper we presented an application specific data

prefetching mechanism to improve the performance of object-
oriented embedded processors. We also suggested an approach
to reducing the power overhead of the prefetching mechanism.
Our prefetching approach divides the data accesses of a class
method into two conditional and unconditional parts and uses
the static information about each class method to prefetch data
fields of an object required by a method upon invoking it. This
technique improves the miss ratio by 66% on average.
Effective management of the access patterns by dividing them

based on the method to which they belong and storing the
access information of nested loops using a simple structure are
the merits of our proposed mechanism. Furthermore, to reduce
the prefetch related tag comparisons (and energy consumption)
we added a flag to each cache block in order to specify the
recently prefetched data item. The cache searches the way
whose prefetch flag is set to one and if does not find the data,
searches the other ways of a set. The experimental results show
that this method reduces tag comparisons by 21% on average.
Applying the prefetch flag will result in a two phase cache
access and may impose some performance overhead on the
system. However, since we use the prefetch flag only for the
prefetched data items, which are very likely to be accessed
after prefetching, we can get a high first phase hit ratio. Our
results show that 97% of the accesses hit the cache at the first
phase.

REFERENCES
[1] J.L. Hennessy, and D.A. Patterson, Computer Architecture: a

Quantitative Approach, 3rd Edition, Morgan Kaufmann, 2003.
[2] A. Malik, B. Moyer, and D. Cermak, “A Low Power Unified Cache

Architecture Providing Power and Performance Flexibility,” Intl. Symp.
On Low-Power Electronic Design, June 2000.

[3] S. Segars, “Low Power Design Techniques for Microprocessors,” Intl.
Solid-State Circuits Conf. Tutorial, 2001.

[4] Y. Guo et. al. “Energy Aware Data Prefetching for General Purpose
Programs,” In Proc. of Power-Aware Computer Systems, Dec. 2004.

[5] M. Goudarzi, S. Hessabi, “The ODYSSEY Tool-Set for System-Level
Synthesis of Object-Oriented Models,” Proc. of Embedded Computer
Systems: Architectures, MOdeling, and Simulation (SAMOS V), LNCS
3553, Greece, Jul. 2005, pp. 394-403.

[6] M. Modarressi, M. Goudarzi, and S. Hessabi, "Application-Specific
Hardware-Driven Prefetching To Improve Data Cache Performance,”
Tenth Asia-Pacific Computer System Architecture Conf. (ACSAC'05),
LNCS 3740, Singapore, 2005, pp. 761 – 774.

[7] J. W. C. Fu, and J.H. Patel, “Stride Directed Prefetching in Scalar
Processors,” In Proc. of the 25th Annual Symp. on Microarchitecture,
Nov. 1992, pp. 102-110.

[8] S. Kim, and A. Veidenbaum, “Stride-Directed Prefetching for Secondary
Caches,” In Proc. of the 1997 Intl. Conf. on Parallel Processing, Aug.
1997, pp. 314-321.

[9] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, “POWER4
System Microarchitecture,” IBM Technical White Paper, 2001.

[10] S.P. VanderWiel, ”Masking Memory Latency with Compiler Assisted
Data Prefetch Controller,” Ph.D. thesis, University of Minnesota, 1998.

[11] M. Karlsson, F. Dahlgren, and P. Sternstrom, “A Prefetching Technique
for Irregular Accesses to Linked Data Structures,” In Sixth International
Symposium on High Performance Computer Architecture, France, Jan.
2000, pp. 206–217.

[12] Y. Solihin, J. Lee, and J. Torrellas, “Using a User-Level Memory Thread
for Correlation Prefetching,” In Proceedings of the 29th International
Symposium on Computer Architecture, May 2002, pp.171–182.

[13] Z. Zhang and T. Torrellas, “Speeding up Irregular Applications in
Shared Memory Multiprocessors: Memory Binding and Group
Prefetching,” In Proceedings of the 22nd Intl. Symp. on Computer
Architecture, Italy, June 1995, pp. 1–19.

[14] Z. Wang, “Cooperative Hardware-Software Caching for the Next
Generation Memory Systems,” PhD thesis, University of Amherst, MA,
USA, 2004.

[15] J. Kin, M. Gupta, and W. H. Mngione-Smith, “The Filter Cache: An
Energy Efficient Memory Structure,” Proc. of the 30th Annual Intl.
Symp. on Microarchitecture, Dec. 1997, pp.184–193.

[16] K. Inoue, T. Ishihara, and K. Murakami, ”Way-Predicting Set-
Associative Cache for High Performance and Low Energy

Consumption,” Proc. ISLPED’99 Intl. Symp. on Low Power Electronics
and Design, 1999, pp.273-275.

[17] N. Bellas, I. Hajj, C. D. Polychronopoulos, and G. Stamoulis,
“Architectural and Compiler Techniques for Energy Reduction in High-
Performance Microprocessors,” IEEE Transactions on VLSI Systems,
Vol. 8, No. 3, 2000, pp.317-326.

[18] Yeager, “The MIPS R1000 superscalar microprocessor,” IEEE Micro,
Vol. 6, No. 2, Apr. 1996, pp 28-40.

[19] M. Goudarzi, S. Hessabi, and A. Mycroft, “No-Overhead Polymorphism
in Network-on-Chip Implementation of Object-Oriented Models,” Proc.
of Design Automation and Test in Europe (DATE’04), February 2004.

[20] M. Goudarzi, S. Hessabi, A. Mycroft, “Object-Oriented Embedded
System Development Based on Synthesis and Reuse of OO-ASIPs,”
Journal of Universal Computer Science, Vol. 10, No. 9, Sep. 2004, pp.
1123-1155.

[21] P. Petrov and A. Orailoglu, “Performance and Power Effectiveness in
Embedded Processors: Customizable Partitioned Caches,” IEEE
Transaction on Computer Aided Design of Integrated Circuits and
Systems, Vol. 20, No 11, Nov. 2001.

[22] T.C. Mowry, S. Lam and A. Gupta, “Design and Evaluation of a
Compiler Algorithm for Prefetching,” In Proc. of the Fifth Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems, Boston, MA, Sept. 1992, pp. 62-73.

[23] M. Najafvand, “Implementation of a JPEG OO-Processor,” M.S. thesis,
Sharif University of Technology, Tehran, Iran, 2006.

[24] N. MohammadZadeh, S. Hessabi, M. Goudarzi, “Software
Implementation of MPEG2 Decoder on an ASIP JPEG Processor,” Proc.
of Intl. Conf. on Microelectronics (ICM'05), Pakistan, Dec. 2005.

[25] I. Porres, AND O. Lilius, “Digital Sound Recorder: A Case Study on
Designing Embedded Systems Using UML Notation,” Technical Report
No. 234, Turku center, Finland, 1999.

[26] H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “Multiple
access caches: energy implications,” In Proc. of the IEEE CS Annual
Workshop on VLSI, Apr. 2000.

[27] M. Modarressi, “Design and implementation of an object-aware cache
for object-oriented ASIPs,” M.S. thesis, Sharif University of
Technology, Tehran, Iran, 2006.

