
A Table-Based Application-Specific Prefetch Engine 
for Object-Oriented Embedded Systems 

Saahin Hessabi, Mehdi Modarressi, Maziar Goudarzi, Hani Javanhemmat 
Computer Engineering Department 

Sharif University of Technology 
Tehran, Iran. 

hessabi@sharif.edu, modarressi@ce.sharif.edu, goudarzi@sharif.edu, javan@ce.sharif.edu 
 
 

Abstract—A table-based application-specific data prefetching 
mechanism is presented in this paper. This mechanism is 
proposed to improve the performance of the application specific 
instruction-set processors (ASIP) we develop customized to an 
object-oriented application. In this approach, we divide the data 
accesses of a class method into two conditional and unconditional 
parts. We supply the prefetch engine with the static information 
about each part to prefetch all data fields of an object required 
by a class method when the class method is invoked. Effective 
management of memory access patterns by dividing them based 
on the method to which they belong and storing the access 
information of nested loops using a simple structure are the 
merits of the proposed mechanism. In addition, by adding a 
prefetch flag to cache blocks, we eliminate a large number of 
prefetch related tag comparisons. The results show that the 
proposed mechanism  reduces the cache miss ratio and prefetch 
related tag comparisons  on average by 66% and 21% 
,respectively. 

I. INTRODUCTION 
Data prefetching is a basic technique for enhancing cache 

performance [1]. Although considerable research has been 
concentrated on prefetching techniques and many prefetching 
methods have been developed, since the memory-processor 
speed gap continues to increase, there is continuing demand for 
improving prefetching methods. 

In designing a prefetching mechanism, it is important to 
pay attention to its impact on processor energy consumption. 
Cache memories may consume up to 50% of processor energy 
[2], [3]. Moreover, using some hardware prefetching 
mechanism will increase the memory system energy 
consumption by 30% [4]. However, in embedded systems 
where the hardware and the running application are specific 
and remain unchanged during system life time, some system 
attributes can be used to improve the prefetching performance 
and power consumption. 

The application-specific processors we use in this research 
are introduced in Section 2. These processors are specifically 
designed to suit object-oriented applications and are 
synthesized from an object-oriented high-level specification 
using the ODYSSEY synthesis tool [5]. Class methods of the 
object-oriented specification are either implemented in 
software, as software routines, or in hardware, as hardware 
functional units. As a result, the processor is composed of a 

processor core, which executes the software routines, along 
with a number of hardware functional units. 

We have already presented an application-specific data 
prefetching mechanism for these processors [6]. In the 
proposed mechanism, the cache controller prefetches all data 
fields of an object which are unconditionally accessed by a 
class method, when the class method is invoked. This approach 
adapts the prefetching mechanism to the running application. 
The simulation results of this mechanism using some object-
oriented benchmarks show that on average, this method 
reduces the miss ratio by 70%. 

In this paper, we propose a table-based implementation for 
that prefetching mechanism. We also customize this table-
based structure for stride-prefetching in array-based accesses. 
Stride prefetching detects sequences of accesses that differ by a 
constant value and prefetches the addresses that continue the 
stride pattern. These methods often apply a table to store the 
most recent stride information [7] [8] [9]. 

Our approach divides the class method data accesses into 
two conditional and unconditional parts and takes advantage of 
static information about both parts to prefetch the required data 
items. A number of mechanisms such as the one presented in 
[4] apply compiler supplied static information to improve the 
performance and reduce the prefetching energy consumption. 
[4] uses a combined stride and pointer prefetching and supplies 
it with some static information such as stride information and 
the suitable prefetching method (stride or pointer) for each 
load/store instruction. It reduces the prefetch related energy 
overhead by 40%. Some other software-hardware cooperative 
prefetching approaches such as Data Prefetch Controller in 
[10], prefetching array in [11], User-Level Memory Thread in 
[12], Group Prefetching in [13], and Guided Region 
Prefetching in [14] apply the information about the running 
application to improve the prefetching performance. The 
prefetch structure we propose in this paper is simpler than the 
structures used in other software-hardware cooperative 
mechanisms while we can effectively detect the access patterns 
generated by class methods and prefetch the required data 
items before the actual request for them.  

Although prefetching improves the cache performance, it 
increases the cache energy consumption. The main source of 
the prefetch-related energy overhead (especially in set-
associative caches) is the cache lookups related to prefetching. 



 

Figure 1.  The internal architecture of our ASIPs 

In set-associative caches, all the ways in a set are accessed 
in parallel although at most only one way contains the desired 
data. Since prefetch engines search the cache for a data before 
prefetching it, prefetching results in a large number of parallel 
tag comparisons and increases the cache power overhead. To 
alleviate this effect, we can add a small direct-mapped cache 
between the processor and the L1 cache to keep the prefetched 
data items. “Filter cache” [15] proposes a similar approach 
which stores the most recently used data items of the cache (but 
not the prefetched data) in a small direct-mapped cache. 
However, in order to eliminate moving data items between L1 
cache and the prefetch cache, we propose an alternative way by 
adding a prefetch flag to every cache block in order to specify 
the recently prefetched (or hit during prefetch lookup) cache 
blocks. During the cache lookup, the cache controller first 
accesses the way specified by the prefetch flag (if any) and 
then searches the other ways if the first access results in a miss. 
This method is similar to the way-prediction methods proposed 
for power reduction in set-associative cache memories [16] 
[17] [18]. However, since we have associated it with prefetched 
data items, we can achieve higher hit ratios on the first phase 
accesses. In following sections, we will explain the details of 
our mechanism. 

The structure of the paper is as follows. In Section 2, we 
introduce our embedded system architecture and present our 
prefetching mechanism. Section 3 contains the experimental 
results and finally, Section 4 concludes this paper. 

 

II. DATA PREFETCHING MECHANISM 

A. Embedded Processor Architecture 
 

The embedded system architecture that we follow in this 
research is depicted in Figure 1 [19]. The system is a Network-
on-Chip (NoC) architecture that consists of a processor core 
along with a set of hardware functional units (FU). The 
architecture is specifically designed to suit object-oriented 
(OO) applications. A typical OO application defines a library 
of classes, instantiates objects of those classes, and invokes 
methods of those objects. Our implementation approach for 
each of these three major components of an OO application is 
described below. For presentational purposes, we follow the 
C++ syntax in describing each component. 

• Class library: Each class consists of variable declarations 
and method definitions. Variable declarations are compile-time 
information and do not require a corresponding component in 
implementation. Methods of the OO class library are either 
implemented in software (e.g. A::g() and C::f() in the 
“Instruction Memory” box in Figure 1) or in hardware (e.g. 
A::f() and B::f() FUs below the “Processor core” box). The 
execution of a hardware-implemented method takes multiple 
clock cycles and the method often follows the memory access 
pattern of its high-level description. However, hardware-
implemented methods are several times faster than their 
software-implemented equivalents. 

• Object instantiations: these are specified in the main() 
function. A memory portion should be reserved for each 
instantiated object to store the values of its data items. This 
memory portion is allocated in a data memory (the gray box at 
the left-hand side of Figure 1, called OMU: Object 
Management Unit) that is accessible to the processor core as 
well as all FUs. 

• Method invocations: the sequence of method invocations 
is specified in the main() function of the application. The 
executable code of this function comprises another part of the 
instruction memory (see Figure 1).The processor core starts by 
reading the instructions specified in the main() function of the 
application. Whenever a method call instruction is read, the 
corresponding implementation is resolved and invoked. This 
may result in calling a software routine (e.g. C::f() in Figure 1) 
or activating an FU (e.g. A::f()). Each method implementation 
(be it in hardware or software) can also call other methods. 

Since methods may be implemented in hardware as well as 
in software, new techniques are required to efficiently dispatch 
method-calls among method implementations. To achieve this 
goal, we view each method call as a network packet. Each 
method call is identified by a called method, a called object and 
the parameters of the call. Therefore, each packet includes 
three fields named mid, oid and params to respectively 
represent the called method number, the called object number 
and the call parameters. It also contains the mid of the caller 
method as the destination of return values. The numbers 
allocated to methods and objects are assigned such that routing 
the packet on the on-chip network corresponds to dispatching 
the call to the appropriate called method irrespective of the 
caller and called methods being in software or hardware [19]. If 
the invoked method is implemented in hardware as a functional 



unit, the FU extracts the input parameters from the packet and 
starts execution. If the method is implemented in software, the 
processor core gets the packet and executes the method. The 
invoked method may also need to call other methods. During 
execution, the method may need to access some data fields of 
its corresponding object. The method requests the data by 
sending the oid and offset to the OMU. The OMU maps the oid 
and offset to a physical address and sends the corresponding 
data to the method. 

When a method execution completes, the called method 
sends another packet over the same on-chip network to the 
caller method containing some fields such as return values. 
More details about this architecture can be found in [5], [19] 
and [20]. 

B. The Proposed Data Prefetching Mechanism 
In previous section, we introduced the architecture of the 

object-oriented ASIPs. The OMU in our ASIP architecture also 
contains a data cache and controls it to accelerate data accesses. 
The cache controller monitors the network and extracts the 
called method and called object identifiers upon a method 
invocation. Thus, the cache controller can be aware of the 
currently called method and also aware of the object on which 
the method should work. It is also aware of the other part of the 
data addresses requested by a method (i.e. the data field offsets) 
by keeping them in a prefetch table. These data field offsets can 
be obtained by a static analysis of method codes and also 
profiling method codes using some reasonable benchmarks. 
Owing to the fact that class methods may be called on different 
objects, but the unconditionally accessed data fields of the 
called object are the same for all invocations, the cache 
controller being aware of calling a method on an object, can 
prefetch the unconditionally-accessed data fields of the called 
object to the cache. In our previous work, we simulated this 
approach on some object-oriented benchmarks and showed that 
it can reduce the miss ratio by about 70% [6]. 

Since array-based structures are the most common data 
structures in embedded systems, especially in image and voice 
processing and wireless applications [21], we focus on the 
stride prefetching [7]. Nevertheless, our mechanism is also able 
to prefetch scalar data items. 

We divide the data accesses of a class method into two 
unconditional and conditional accesses. The unconditional 
accesses happen in the same way every time a method is 
invoked. The conditional accesses (such as data accesses in the 
body of an if-then-else statement or in a loop that accesses 
different elements of an array based on a variable value) take 
place based on the input parameters and the run-time behavior 
of the program. Figure 2 illustrates an example method code. In 
this figure, the first and the fourth loops are the unconditional 
access parts of method f(). On the other hand, since the second 
and the third loops access different elements of the arrays b and 
d based on the input parameter of the method, these loops form 
the conditional access parts of the method. Arrays a, b, c and d 
are the data members of class cls and N is a constant value. For 
the unconditionally accessed data fields, we use a table to keep 
their offsets. The table keeps the starting and stopping offsets 
and the stride of these access patterns (see below).  

 

Figure 2.  Pseudo code of a class method. The first and fourth loops generate 
unconditional access patterns while the second and third loops generate 

conditional access patterns 

 

Figure 3.  The structure of the proposed prefetch table 

 

 
Figure 4.  An entry of the History Table 

 
 

In the conditional data accesses in Figure 2, the start offset 
of the accesses depends on run-time conditions. However, even 
these accesses may still follow a constant stride. To support 
this type of conditional access patterns (with constant stride), 
we store the expected stride of them in prefetch table. The 
structure of our prefetch table is depicted in Figure 3. This 
structure has an Index Table which is indexed by the called 
method identifier (mid). The entries in the Index Table contain 
pointers into another table, History Table, which holds the 
memory access information of class methods. 

Each entry of the History Table depicted in Figure 4 has 
some fields. The Dyna field is a dynamic field and stores the 
run-time information of the access patterns, while the other 
fields contain the static information provided before synthesis. 



The T field determines the type of an entry. If T=0, the entry is 
used to prefetch a scalar data and holds a single offset in the 
Start field. If T=1, the Start field is the start offset of an 
unconditional access pattern. In this case, the Stride, Degree 
and Dyna fields keep the stride, the prefetch degree and the last 
prefetched offset of this unconditional access pattern, 
respectively. If T=2, the Stride field holds the expected stride 
for a conditional access pattern; The other fields are empty in 
this case. If T=3, the entry contains a pointer to another entry 
of the History Table. Accessing a pointer entry, if the Dyna 
field of the entry is greater than 0, the cache controller 
decreases the Dyna field by one and initiates prefetching 
according to the entry pointed by the Start field of the current 
entry. Here, the Dyna field acts as a loop counter and we use 
the Degree field to keep its initial value. The pointer entries are 
useful for prefetching the data items in nested loops. By using 
the pointer entries, we can simulate the nested loops and 
exactly follow their access patterns. By exactly following the 
access patterns of the methods, we can eliminate (or reduce) 
the cache pollution problem. The number of iterations of a loop 
generated by a pointer entry is stored in its Degree field and 
equals to the number of iterations of the corresponding loop in 
the application. The use of pointer entries enables us to store 
the access patterns of nested loops using a very simple 
structure. This is a major advantage of this table structure. 

If the C field is set, the current and the next entries should 
be processed (and their addresses be prefetched) 
simultaneously. This is useful for handling the loops that access 
more than one array. In addition to the mentioned fields, the S 
field determines the end of the History Table entries related to 
a method. 

As an example, five History Table entries are used to keep 
the access information of the loops in the pseudo code depicted 
in Figure 2. Upon invocation of the method f()To simulate the 
loop encircling the loops 3 and 4, we insert a pointer entry after 
the entry corresponding to loop 4. This pointer entry generates 
a loop through the entries related to the loops 3 and 4 and lets 
them prefetch N elements of their corresponding array at each 
iteration. 

Unconditional data accesses can be easily recognized by 
their starting and stopping addresses; i.e., detecting the requests 
for starting and stopping addresses of an unconditionally 
accessed part determines the time when we should prefetch the 
unconditionally accessed data items according to the table. The 
cache controller uses the expected stride of a conditional access 
pattern to detect its start and uses either the first address of the 
next pattern (if the next pattern is an unconditional pattern) or 
the expected stride for the next pattern (if the next pattern is 
conditional) to detect its stop.  

Since we focus on the data accesses of a single class 
method (and not the entire program) and each method contains 
a limited number of loops (and thus access patterns), we can 
often effectively manage data access patterns and divide them 
into conditional and unconditional parts and store the access 
information in the table. Moreover, by dividing data access 
patterns based on the methods to which they belong, detecting 
the access patterns (in order to initialize and stop prefetching) 
can be done more precisely at run-time.  

Although the table cannot store the information of all 
access patterns, we can encode and store the access information 
of the access patterns generated by most of the common loop 
configurations. For more complex loops one can apply some 
algorithms to convert them into simpler patterns [21], [22]. 
Moreover, the irregular access patterns (for example the access 
patterns with variable stride) can be stored using the scalar 
entries in the table.  

 

C. Reducing Prefetch Related Tag Operations 
As mentioned before, accessing N data arrays and N tag 

arrays per cache access (where N is the associativity degree of 
the cache) is the main source of power consumption in set-
associative cache memories. Since prefetch engines search the 
cache for a data before prefetching it, using a prefetch 
mechanism increases the number of tag comparisons, and thus 
the power consumption of the cache.  

As an approach to reducing the prefetch related tag 
comparisons, one can add a small direct-mapped prefetch cache 
between the CPU and the L1 cache to keep the prefetched data 
items. This is similar to the filter cache idea [15] which keeps 
the most recently used data in such a direct-mapped cache.  

However, to eliminate moving cache blocks between the L1 
and the prefetch cache, we implement this prefetch cache 
within the L1 cache by using a prefetch flag for each way 
within a set. When we prefetch a block to the cache or when 
the lookup operation before prefetching hits the cache, we 
specify the way which contains the block by setting its prefetch 
flag. During cache lookup operation within  a cache set, the 
cache controller first searches the way specified by the prefetch 
flag and then searches the other ways of the set if the first 
search does not hit the cache. The cache controller resets the 
prefetch flag, if the way specified by the prefetch flag does not 
contain the requested data. In addition, upon prefetching a new 
data into a set, we reset the prefetch flag of other ways within 
the set.  

Like other way-prediction approaches, this approach leads 
to a two phase access and can potentially increase the cache 
access time. However, as we will see in the next section, since 
we only use the prefetch flag for the recently prefetched data 
which are very likely to be accessed after prefetching, most of 
the requests hit the cache at the first phase. As a result, this 
method effectively reduces the number of prefetch related tag 
operations while does not have a big effect on the cache access 
time. 

Unlike most way-prediction approaches, however, in this 
approach, we only apply two phase access in the sets whose at 
least one prefetch flag is set. The cache performs the traditional 
parallel tag operations if no prefetch flag in the accessed set is 
raised. 

In the next section we evaluate the proposed methods on 
some object-oriented ASIPs synthesized for real world 
applications. 

 

 



 

TABLE I.  THE CHARACTRICTICS OF THE BENCHMARKS 

 Benchmark Input Parameter No. of Memory 
References 

No. of class 
methods(Functional Units) 

JPEG Encoder A 320×240 bitmap picture 5,733,229 17 
JPEG Decoder A 320×240 jpeg picture 4,632,957 40 
MPEG Decoder A 128x128x24b ppm file 4,927,940 97 
V44 Two  32 kb text files 14,219,719 24 

Sound Recorder A random sequence of recording and 
playing .wav files 8,203,047 27 

 
 

TABLE II.  THE MISS RATIO VS. THE CACHE SIZE FOR DIFFERENT PREFETCHING SCHEMES 

 
 

III. EXPERIMENTAL RESULTS 
 

The prefetching mechanism is implemented in five ASIPs. 
We have chosen these applications as benchmarks since we did 
not find any publicly available C++ benchmark describing an 
embedded system. The characteristics of the ASIPs are shown 
in Table I. The JPEG decoder and encoder are described in 
[23]. Although both of these programs work on JPEG files, 
their different access patterns allow us to use them as two 
different benchmarks. The V44 is a decoder of the modem 
compression protocol. The MPEG benchmark is an MPEG 
decoder described in [24]. The Sound Recorder is a sound 
recorder controller designed according to a case study in [25]. 
These programs have been synthesized by our synthesis tool 
[5]. The output of this tool is an object-oriented ASIP in the 
synthesizable subset of SystemC which contains a processing 
core, some functional units and a network which connects all 
these processing elements (see Section 2.1). Since our 
prefetching mechanism is independent of the implementation 
type of the methods (hardware or software) we synthesized all 
class methods of the benchmarks into hardware functional 
units. The cache is added to the SystemC code of the 
synthesized ASIPs and some counters in the cache collect the 
desired information when the ASIPs run the main function of 
the applications. 

 The miss ratio of the benchmarks in absence and presence 
of the proposed prefetching mechanism for various cache sizes 
are illustrated in Table II. 

 

 

 

 In order to compare the proposed prefetching mechanism 
with another mechanism, we also present the results for a 
simple stride prefetching approach which monitors the data 
access patterns generated by the methods and starts prefetching 
upon detecting a stride. In order to detect a stride, this simple 
strides prefetching approach compares consecutive addresses 
generated by the processor. Regarding the results presented in 
Table II, the proposed prefetching method enhances the data 
cache behavior and causes the miss ratio to reduce on average 
by 66%. As a result, we can get a higher hit ratio in a cache 
with a given size or can get a desired hit ratio by a smaller 
cache. This property is specifically useful in embedded systems 
due to the limited cache size in such systems. 

Table III displays the number of tag comparisons during the 
execution of each benchmark in a 4-way set associative cache 
with and without applying the prefetch flag.  The cache size 
and block size are 8K and 8 words, respectively.  

If we do not use the prefetch flag, accessing a prefetched 
data item involves 4 tag comparisons before prefetching and 4 
comparisons each time the prefetched data is requested. In the 
presence of our prefetch flag scheme, however, since accessing 
a prefetched data before resetting the prefetch flag ideally 
needs only one tag comparison, the prefetch flag can reduce the 
number of tag comparisons for prefetched data and alleviate the 
effect of additional tag comparisons caused by prefetching. 

Table III shows that the prefetch flag reduces the tag 
operations on average, by 21%. This reduction in the tag 
operations, leads to reduction in prefetching power overhead. 

  

Cache Size 8 K 4 K 2 K 

Benchmark No 
Prefetching 

Our 
Proposed 

Prefetching 

Simple 
Stride 

Prefetching 

No 
Prefetching 

Our 
Proposed 

Prefetching 

Simple 
Stride 

Prefetching 

No 
Prefetching 

Our 
Proposed 

Prefetching 

Simple 
Stride 

Prefetching 
JPEG Decoder 0.11 0.02 0.02 0.14 0.05 0.09 4.90 0.98 2.04 
JPEG Encoder 0.46 0.09 0.15 2.98 0.52 0.97 6.21 0.34 1.23 
MPEG Decoder 4.50 1.06 1.89 5.04 1.94 2.75 10.79 4.54 6.98 
V44 1.41 0.38 0.54 1.58 0.48 0.56 2.83 0.63 0.84 
Sound Recorder 6.61 2.90 3.11 11.90 3.22 5.89 13.09 3.68 7.09 



 

TABLE III.  NUMBER OF TAG COMPARISONS WITH AND WITHOUT USING 
PREFETCH FLAG 

 

Benchmark 

# of tag 
comparisons 

without 
prefetch flag 

# of tag 
comparisons using 

prefetch flag 

Tag 
comparison 
reduction 

JPEG Encoder 33,216,280 25,886,137 22% 

JPEG Decoder 24,845,672 21,396,370 13% 

MPEG Decoder 27,596,464 18,063,752 34% 
V44 79,630,426 61,020,008 23% 
Sound Recorder 46,802,764 39,829,511 15% 

 

TABLE IV.  THE NUMBER OF REQUESTS THAT HIT/MISS THE CACHE AT 
THE FIRST PHASE 

Cache size=8 kb 
Benchmark 

One-phase 
accesses 

Two-phase 
accesses 

One-phase hit 
ratio 

JPEG Encoder 5,327,245 197,134 96% 
JPEG Decoder 4,430,970 201,987 95% 
MPEG Decoder 4,702,425 225,515 96% 
V44 14,015,025 204,694 98% 
Sound Recorder 8,101,572 101,475 99% 

 

 

Although this approach reduces the number of tag 
operations for prefetched data, it increases the access latency, if 
an address does not hit the cache at the first phase. Table IV 
presents the number of one phase and two phase accesses in the 
experiments. The results show that on average, 97% of 
accesses hit the cache at the first phase. The cache access is 
done in one phase when either the way determined by the 
prefetch flag contains the requested data or none of the prefetch 
flags in a set are set (all ways are accessed in parallel). The fact 
that we only use the prefetch flag for the prefetched data 
(which are very likely to be accessed after prefetching) results 
in a high hit ratio at the first phase. This first-phase hit ratio is 
larger than the first-phase hit ratios obtained by previous way-
prediction mechanisms [16][17]. The details about the area 
overhead of the proposed prefetch engine can be found in [27]. 

 

IV. CONCLUSIONS 
In this paper we presented an application specific data 

prefetching mechanism to improve the performance of object-
oriented embedded processors. We also suggested an approach 
to reducing the power overhead of the prefetching mechanism. 
Our prefetching approach divides the data accesses of a class 
method into two conditional and unconditional parts and uses 
the static information about each class method to prefetch data 
fields of an object required by a method upon invoking it. This 
technique improves the miss ratio by 66% on average. 
Effective management of the access patterns by dividing them 

based on the method to which they belong and storing the 
access information of nested loops using a simple structure are 
the merits of our proposed mechanism. Furthermore, to reduce 
the prefetch related tag comparisons (and energy consumption) 
we added a flag to each cache block in order to specify the 
recently prefetched data item. The cache searches the way 
whose prefetch flag is set to one and if does not find the data, 
searches the other ways of a set. The experimental results show 
that this method reduces tag comparisons by 21% on average. 
Applying the prefetch flag will result in a two phase cache 
access and may impose some performance overhead on the 
system. However, since we use the prefetch flag only for the 
prefetched data items, which are very likely to be accessed 
after prefetching, we can get a high first phase hit ratio. Our 
results show that 97% of the accesses hit the cache at the first 
phase. 
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