1. (a) Use Matlab to plot the discrete-time signal
\[x[n] = \sin(\omega_0 n) \]
for the following values of \(\omega_0 \):

\[-\frac{29\pi}{8}, -\frac{3\pi}{8}, -\frac{\pi}{8}, \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8}, \frac{33\pi}{8}, \frac{21\pi}{8}. \]

→ Use the subplot function to plot four graphs per page.
→ Label each graph with the frequency.
→ Use the plotting function stem to make the graphs look like the ones in the Book.
→ Plot each signal for \(0 \leq n \leq 63 \).

Ex:
\[
k = [0:1:63];
n = -3;
w = n \times \pi/8;
y = \sin(w \times k);
subplot(4,1,1);
stem(k,y);
title('-3 pi/8');
\]

(b) Are any of the graphs from part (a) identical to one another? Explain.
(c) How are the graphs of \(x[n] = \sin(\omega_0 n) \) for \(\omega_0 = \frac{7\pi}{8} \) and \(\omega_0 = \frac{9\pi}{8} \) related? Explain.

2. Consider the continuous-time \(2\pi \) periodic square wave signal shown below:
We will expand $x(t)$ in a Fourier series using Eq. (3.38) and (3.39) on page 191 of the book. Plugging into the equations gives the series:

$$x(t) = \frac{4}{\pi} \left(\frac{\sin t}{1} + \frac{\sin 3t}{3} + \frac{\sin 5t}{5} + \cdots \right).$$

(a) Graph the first term of the series.
(b) Graph the sum of the first two terms of the series, i.e.,
$$\frac{4}{\pi} \left(\frac{\sin t}{1} + \frac{\sin 3t}{3} \right),$$
(c) Graph the sum of the first eight terms.

Plot all of the above using 1000 points evenly spaced between zero and 2π.

Ex:
$$t = [0:2*pi/1000:2*pi];$$
$$subplot(3,1,1);$$
$$y = 4/pi.*sin(t);$$
$$plot(t,y);$$

3. Consider a discrete-time system H_1 with impulse response
$$h_1[n] = \delta[n] + \delta[n-1] - \delta[n-2] - \delta[n-3],$$
a discrete-time system H_2 with impulse response
$$h_2[n] = \left(\frac{1}{2} \right)^n (u[n+3] - u[n-3]),$$
and a discrete-time signal
$$x[n] = \left(\frac{1}{4} \right)^n (u[n] - u[n-6]).$$

The signals $h_1[n]$, $h_2[n]$, and $x[n]$ are all defined for $-8<=n<=8$.

(a) Plot $h_1[n]$, $h_2[n]$, and $x[n]$ together using the subplot function.
(b) Consider a system H formed from the series connection of H_1 and H_2, where $x[n]$ is input to H_1, the output $v[n]$ of H_1 is input to H_2, and the output of H_2 is $y[n]$. Use the `conv` function to find $v[n]$ and $y[n]$. Plot $v[n]$ and $y[n]$ using the subplot function.
(c) Now assume that the order of the systems is reversed, so that \(x[n] \) is input to H2, the output \(v[n] \) of H2 is input to H1, and \(y[n] \) is the output of H1. Plot \(v[n] \) and \(y[n] \). Briefly explain why \(v[n] \) is different in parts (b) and (c), whereas \(y[n] \) is the same in both parts.

Note: The first element of a Matlab array has index 1. Since the above signals are nonzero for negative values of the time index, you need to make another array, called \(n \) for example, to hold the values of the independent (time) variable when you make the plots in this problem. Then, e.g., \(y[n] \) can be plotted against the vector of times \(n \) using the command \texttt{stem(n,y)}.