سبیلمن های چندرسانهای (۴۲۴-۲۰۰)
دانشگاه مهندسی کامپیوتر
ترم پاییز ۱۳۸۴
دکتر حمیدرضا ربعی

تکلیف شماره ۷: کنفرانس صوتی، تصویری از طریق اینترنت

۱- مقدمه
کنفرانس از راه دور یا پشتیبانی کامل صوتی و تصویری یک کاربرد مهم از فناوری صوتی و تصویری می‌باشد. هدف از این آزمایش
یادگیری اصول اولیه کنفرانس صوتی و تصویری است. در اینجا چگونگی کارکرد یک سیستم کنفرانس تصویری مطرح می‌شود و
چالش‌های کنونی این فناوری مورد بحث قرار می‌گیرد. به عنوان یک مثال عملی برنامه Net meeting می‌شود.

۲- بررسی یک سیستم کنفرانس صوتی، تصویری
واژه ای کنفرانس به یک گروه از نقاط پراکنده جغرافیایی گفته می‌شود که دارای امکان تبادل اطلاعات صوتی و تصویری از طریق
شبکه‌های ارتباطی می‌باشد. شرکت کننده‌گان در کنفرانس می‌توانند به انواع مختلفی از داده‌ها دسترسی داشته باشند (به طور مثال
فقط صدا، صدا و داده، صدا و تصویر و صدا و تصویر و داده).

یک سیستم کنفرانس حداکثر از دو پایانه که از طریق یک محفظه انتقال مشخص بی‌پدیدگی در ارتباطند تشکیل شده است. در پایانه
باید اطلاعات فرسانده و دریافت صدا، تصویر، داده (متن) تصویر نشان دهنده کسی می‌باشد که به روش ارائه ISDN، خطوط ارائه‌ای،کامپیوتر و درج یک واژه، بردار مشترک را داشته باشد. این سیستم کنفرانس می‌تواند با نمایش یک شرکت کننده در شبکه‌های محتوای و غیره، رابط داشته باشد. در میان سیستم کنفرانسی نهایی که به نظر دوپایانه می‌تواند با هم ارتباط داشته باشد، درحالی که در سیستم
کنفرانسی چند نهایی ای، باید از دو پایانه با هم ارتباط داشته باشد. در کنفرانس چند نهایی ای همه‌ی یک واحد کنترل چند نهایی
که اغلب با نام سرویس دهندگان کنفرانس چند نهایی (MCS) یا شناخته شده است مورد انتقال است که کار آن کنترل
اطلاعات نویز شده و توسط پایانه‌ها می‌باشد. این واحد ممکن است نیاز به تکیه‌گذاری داده با یک تصویری که در کنفرانس
ختلف دریافت می‌کند و فرسانده ان به یک شرکت کننده داشته باشد. به طور معمول، پایانه‌های شرکت کننده در یک کنفرانس از
ظر نویز دریافت و فرسانده متفاوت هستند (در زمان سرعت جریان، روشنایی که کردن صوت و تصویر و غیره) این شرکت
KENNDANSHI می‌توانند از یک شبکه (PSIN, ISDN) در یک شبکه محلی (WAN) باشد. در مرحله بعد، به یک واحد و مرکز (GWU)
نیاز است که این واحد عمل یک واحد کنترل چند نهایی را انجام دهد برای نمونه یک سیستم کنفرانس چند نهایی ای شامل شرکت
KENNDANSHI در یک ISDN به خویه، PSTN وISDN در شکل ۱ نشان
داده شده است.
سیستم های کنفرانسی متنوعی وجود دارد. سیستم کنفرانسی boardroom، یک نمایشگر تصویری برگ و سیستم صوتی دارای کیفیت بالا برای می‌شود. سیستم کنفرانسی روی یک کامپیوتر (پردازشگر) که دارای قابلیت‌های کنفرانسی شامل میکروفون، بلندگو و دوربین است، اطلاعات می‌شود. واضح است که این دو سیستم می‌باشد که قابلیت‌های کنفرانس را داشته باشند. این نظریه کنفرانسی boardroom، هم مورد استفاده قرار می‌گیرد. از این سیستم، نه تنها به کنفرانس بلکه برای کمک‌ربای اموزش از هر دور و رابطه‌ی اینترنتی را راه‌ی در پزشکی هم مورد استفاده قرار می‌گیرد. مهم ترین دلیل برای استفاده از چنین سیستمی صرف جویی در زمان و هزینه است. سیستم کنفرانسی روی یک کامپیوتر در میان کارمندان یک شرکت حضور جدی تری پیدا کرده است. چرا که سیستمی مالتی مدیا کاربران بیشتر دارد و توانمندی افزایش کارایی در تولید را دارا برای فروش آن رشد چشم‌گیری در سالهای اخیر داشته است و به زودی از سیستم‌های boardroom هم پیشی می‌گیرد.

3- پایانه‌های کنفرانس و طرز کار آنها

پایانه‌های کنفرانس از یک و یا چند درخواست (که می‌تواند یک کامپیوتر هم منظوره و یا یک سخن‌افزار منظوره باشد)، میکروفون و بلندگو و نمایشگر این اجزا در شکل 2 نشان داده شده است. مهم‌ترین در ادامه عملکرد اجزاء مختلف یک سیستم کنفرانس به صورت جزئی بررسی شده است. مراحلی که در یک ارتباط کنفرانسی طی می‌شوند عبارتند از: 1- برقراری یک ارتباط با درخواست از یا جواب دادن به یک مشترک دیگر. 2- ارتباطات اولیه و نهایی قابلیت‌ها به منظور مشخص شدن حالات دریافت و ارسال کلیدی مشترک. 3- آغاز ارتباطات صدا/صورتی، داده‌ها. 4- انتهای ارتباط‌های جزئیات این مراحل به مدل شبکه تعداد مشترکان بستگی دارد و در ابتدا پرورشکل‌های کنترلی تعیین می‌شوند.
1. ATM
2. Frame Relay
3. HDLC
4. LAPB
5. LAPD

For ATM and Frame Relay, the main advantage compared to HDLC and LAPB is the reduced overhead.
دبست می‌آید. اشتراک اولیه سرویس ISDN در دو کانال D و یک کانال D از دو کانال D (کانال STN) برای مکان ارائه معرفی شد.

سروری سویچ شده: این سرویس داده را بر روی خطوط سنکرون با سرعت 64kbps و بر روی خطوط غیر سنکرون با سرعت 156kbps پروتکل انقال می‌دهد. این سرویس با اینکه سرعت کمتری نسبت به ISDN پایه دارد در کشور آمریکا بیشتر از MHS استفاده می‌گردد.

سرعت: این سرویس نسل بعدی شبکه های دیجیتال عمومی است. این سرویس از قبیل STN ارائه نماید مبتنی بر تکنولوژی Gbps (Gigabits per second) کانال که 155 مگابايت سوپر هم‌سنجی باید توجه داشته که این سرویس از تکنولوژی ATM استفاده می‌نماید.

۴-۳- شبکه محیط


۴-۴- خط اجرای ات

خط اجرای ات یک مدار ارتباطی است بر خلاف ارتباطات سویچ شده به طور مستقیم برقرار است.

۵- کنترل ارتباطات و سیگنالینگ

۵-۱- واحده تکنیکی ری یک پایان

واحده کنترلی در یک پایان معمولاً عملیات آغاز نماید. بررسی توکانی برقراری ارتباط و کنترل جریان را بر عهده دارد.

۵-۲- کنترل چند نطقه ای

یک واحده کنترلی چند نطقه ای برای کانترل چند نطقه ای لازم است که دارای سه وظیفه اصلی است:

اول آنکه می‌باشد تغییر اصلی جلسه کانترل را بر عهده داشته باشد و کنترل اینکه چه کسی در چه زمانی و چه جهتی می‌تواند ارصال نماید. بر عهده دارد. درم در بعضی از کانترل‌ها می‌باشد بر عهده جریان صوتی ترکیبی ترکیبی ترکیبی ترکیبی ترکیبی T

۵-۳- Gateway

وظیفه ترجمه بین پایان‌های مختلف در شبکه های مختلف (GWU) Gateway واحد بر عهده دارد. این ترجمه شامل فرمت‌های انتقال و روش‌های ارتباطی با استفاده از استانداردهای سیستم‌های مختلف (H.310) و H.233 و H.320 می‌باشد.
6- مدل های کنفرانس

کنفرانس نظمه به تغطیه این کنفرانس بین دو پایانه برقرار می شود که این پایانه ها می توانند بر روی یا نوع شبکه و یا شبکه های متقارن قرار داشته باشند.

- کنفرانس “بسته” (Broadcast)
- کنفرانس “بسته” در این حالت فقط یک پایانه فرستنده و سایرین گیرنده هستند.
- در این حالت یک گیرنده از کنفرانس “بسته” نمی تواند باشد.

Broadcast panel

- اعضای این panel در حالی که تعداد پیشرفتی (شنودگان) ثابت یا نامحدود باشد.

5- ضبط، پخش و فشرده سازی صدا

برای آنکه در یک ارتباط صدا فعال باشد یک میکروفون و یک مدل آنالوگ به دیجیتال می باشد در فرستنده استفاده شود. با صدا را به سیگنال دیجیتال تبدیل نماید. مدل آنالوگ به دیجیتال از سیگنال صوتی آنالوگ دریافت از میکروفون با سرعت مشخص نمایه می کند. و هم نمونه ای تبدیل می شود. معمولاً ترین فرمت دیجیتالی که برای سیگنال صوتی به کار می رود سرعت نمونه گیری آن است که در کل سرعت معادل 48 kbps و 8 بیت برای هر نمونه استفاده می شود.

ارسال یک سیگنال صوتی به یک محقق انتقال با پهنای باند محدود، سیگنال دیجیتال می باشد و فشرده شود.

8- آزمایش

1- اگر Internet Explorer را را در روی NetMeeting ID با ویژگی های مختلف آن آشنا شوید.
2- را به منظور زیر نظر گرفتن ترافیک شبکه داخل آزمایشگاه، اجرا نمایید. آنها با ویژگی های مختلف آن آشنا شوید.
3- Advanced Net Monitor for Classroom (یکی از نرم افزارهای مانیتورینگ شبکه را از اینترنت Download کنید. مثال: Pro).
4- یک میکروفون یا کامپیوتر درون داخ از آزمایشگاه برقرار نمایید.
5- کیفیت صدا (کیفیت و تأخیر) و ترافیک شبکه از هنگامی که Codec های صوتی متقارن استفاده شده اند، مشاهده نمایید.
6- به روایت یک کدک (کدک) تأخیر 16 kbps (G.723)، 32 kbps (G.729) و 64 kbps (G.729) تغییر دهید. مشاهده خود را در گزارش منعكس نمایید.
7- اشتراک گذاری برنا های بین دو طرف را با اینترنت Download نمایید. (مثلاً به آدرس www.CNN.com نمایید.)
8- با ویژگی های مختلف آشنا شوید. Simplified Internet Explorer با ویژگی های مختلف آشنا شوید. (مثلاً به آدرس www.abcnews.com نمایید.)
9- اجرا نمایید. تغییرات ترافیک را قبل و در هنگام انتقال داده مورد Download توجه قرار دهید.
۱۰- (اختیاری) سعی نمایید به یکی از مشترکین داخل آزمایشگاه از طریق مودم از خانه تان تماس بگیرید. همچنین می‌توانید یک تماس با دوست خود (هر دو از طریق مودم) برقرار نمایید. جاها برتر نتایج داده‌های صوتی - تصویری که می‌توانند در دو حالتی که هر دو روزی شیبکه محلی قرار دارید و حالتی که یک یا هر دو از طریق مودم متصل هستند را مقایسه نمایید.

۹- گزارش

۱- مراحل کار و مشاهدات خود را در حین آزمایشات ذکر نمایید. برای هر سطح کیفیت صوتی - تصویری تراکم ارتباطی که شبکه Netmonitor توسعه داده می‌شود یا آیا هیچ افت کیفیتی به هنگام اتصال با یکی از مراحل مشاهده نمودید؟

۲- از نظر استانداردهای استفاده‌کننده امسال استانداردهای سیستم کنفرانس صوتی - تصویری که در اینجا مورد بررسی قرار گرفته، نیاز به کاهش سطح گزارش دارند. چه مقدار از آن را یک سیستم انتقال اطلاعاتی Netmeeting که کار نمی‌کند، در عمل کنار همیاند؟

۳- که چه مقدار از یک سیستم کنفرانس صوتی - تصویری، که در اینجا مورد بررسی قرار گرفته، چه مقدار از آن برای صدا است و چه مقدار از آن برای تصویر؟

۴- (اختیاری) یک نمودار از یک سیستم کنفرانس صوتی - تصویری نویع ترکیبین نمایید.


[۹]. S. A. Thomas, IPng and The TCP/IP Protocols, John Wiley & Sons, ۱۹۹۶.
