Assume that we have 4 environments with the following reward probability vectors.

\[En_{0.1} \quad D = (0.7, 0.5, 0.3, 0.2, 0.4, 0.5, 0.4, 0.3, 0.5, 0.2) \]
\[En_{2.1} \quad D = (0.7, 0.4) \]
\[En_{2.2} \quad D = (0.6, 0.4) \]
\[En_{2.3} \quad D = (0.5, 0.4) \]

Exercise 1.

A. Implement* the following fixed-structure automata for \(En_{0.1} \).
 - Tsetlin(10,20), Tsetlin(10,40), Tsetlin(10,80)
 - Krinsky(10,20), Krinsky(10,40), Krinsky(10,80)
 - Krylov(10,20), Krylov(10,40), Krinsky(10,80)

B. Plot \(M(n) \) (average received reward up to time \(n \)) and compare the results for them concerning the effect of number of states on the speed of convergence.

Exercise 2.

A. Implement the following variable-structure automata for all 4 environments. Set parameters as \(a = 0.01 \) for all automata and \(b = 0.001 \) for LR-eP.
 - LR-I
 - LR-P
 - LR-eP

B. Study the following algorithms from [1] which can be found in the cited URL.
 - TSE Algorithm described in section 2.4.2.2
 - Generalized Pursuit Algorithm introduced in section 4.2

C. Implement the following estimator algorithms for all 4 environments. Set parameter \(\lambda \) as \(\lambda = 0.1 \).
 - CPR-I
 - CPR-P
 - TSE Algorithm
 - Generalized Pursuit Algorithm

D. Describe the results of all the algorithms you implemented in part A and C. For convergence issues, use threshold \(T = 0.99 \) for probability of best action and compare required number of iterations in different algorithms.

Reference

* No implementation language is preferred