1. There are m balls, labeled 1,2,\ldots,m in two boxes, A and B. At step n, one chooses uniformly and independently of the history, an integer I_n in the set $\{1, \ldots, m\}$, and moves the I_n-ball from the box where it is to the other box. Let X_n denote the number of balls in the A box after n steps. Prove that X_n is a time-homogeneous Markov process, determine its transition probability matrix, classify its states, and find its stationary distribution when $m = 3$.

2. The following is a model of cell splitting: at time n, a living cell is split into two cells with probability p, or dies with probability $1-p$. The splitting of different cells is an independent sequence. Let Z_n be the number of living cells at time n. Assume $Z_0 = 2$. Prove that $\{Z_n\}$ is a time-homogeneous Markov process, determine its state space and its transition matrix, find its stationary distribution(s), and classify the states as transient or recurrent.

3. Three tanks fight a three-way duel. Tank A has probability 1/2 of destroying the tank at which it fires, tank B has probability 1/3 of destroying the tank at which it fires, and tank C has probability 1/6 of destroying the tank at which it fires. The tanks fire together and each tank fires at the strongest opponent not yet destroyed. Form a Markov chain by taking as states the subsets of the set of tanks. Find the expected number of steps before the chain is absorbed.