1. Solve the following problems from your text book (by Papoulis) chapter 15:
 15-1
 15-2
 15-8
 15-10
 15-12
 15-13

Solve these questions:

1) Consider a production line where each manufactured item may be defective with probability \(p \in (0, 1) \). The following inspection plan is proposed with a view to detecting defective items without checking every single one.
 It has 2 phases: In phase A, the probability of inspecting an article is \(r \in (0, 1) \). In phase B, all the articles are inspected. One switches from phase A to phase B as soon as a defective item is detected. One switches from phase B to phase A as soon as a sequence of \(N \) successive acceptable items has been found.
 Find the long-run proportion of items inspected. (Hint: Try to take states carefully such that long-run proportion of visiting a set of states equals to the long-run proportion of items inspected).

2) Consider a Markov process with the transition probability diagram shown below.

 ![Transition Diagram]

 a. Under what conditions on the \(a \)'s is the process recurrent?
 b. Under what conditions on the \(a \)'s is the process positive recurrent?
 c. Find the equilibrium distribution \(\pi \) in terms of \(a \)'s.

3)
a. Consider the Markov chain with transition matrix \(P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \) and initial distribution \(\pi_0 = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \). For each \(n \), \(Y_n = \begin{cases} 0, & \text{if } X_n = 1 \\ 1, & \text{otherwise} \end{cases} \) Show that \((Y_0, Y_1, \ldots) \) is \textit{not} a Markov chain.

b. Let \((X_0, X_1, \ldots) \) be a Markov chain with transition matrix \(P \). Define \((Y_0, \ldots) \) by defining \(Y_n = X_{2n} \). Is \((Y_0, \ldots) \) a Markov chain? If so, find its transition matrix (in terms of \(P \)).

4) Consider the following HMM:

![HMM Diagram]

\[
\begin{array}{c}
\begin{array}{c}
\text{Start Here with Prob. 1} \\
\end{array}
\end{array}
\]

\[
\begin{array}{cccccccc}
\alpha_{11} &=& 1/2 & \alpha_{12} &=& 1/2 & \alpha_{13} &=& 0 \\
\alpha_{21} &=& 0 & \alpha_{22} &=& 1/2 & \alpha_{23} &=& 1/2 \\
\alpha_{31} &=& 0 & \alpha_{32} &=& 0 & \alpha_{33} &=& 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
b_1(X) &=& 1/2 & b_1(Y) &=& 1/2 & b_1(\bar{Z}) &=& 0 \\
b_2(X) &=& 1/2 & b_2(Y) &=& 0 & b_2(\bar{Z}) &=& 1/2 \\
b_3(X) &=& 0 & b_3(Y) &=& 1/2 & b_3(\bar{Z}) &=& 1/2 \\
\end{array}
\]

\[
\begin{array}{cccc}
\pi_1 &=& 1 & \pi_2 &=& 0 & \pi_3 &=& 0 \\
\end{array}
\]

Where

\[
\alpha_i = P(q_{t+i} = S_i | q_t = S_j) \\
b_i(k) = P(O_i = k | q_t = S_j)
\]

Suppose we have observed this sequence: XZXYZZYZZ

(In long-hand: \(O_1 = X, O_2 = Z, O_3 = X, O_4 = Y, O_5 = Y, O_6 = Z, O_7 = Y, O_8 = Z, O_9 = Z \).)

Fill in the following table with \(\alpha_i(t) \) values, remembering the definition:

\[
\alpha_i(t) = P(O_1 \wedge O_2 \wedge \ldots \wedge O_t \wedge q_i = S_j)
\]

So for example, \(\alpha_1(2) = P(O_1 = X \wedge O_2 = Z \wedge O_3 = X \wedge q_1 = S_2) \).

<table>
<thead>
<tr>
<th>t</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\alpha_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning: this is a question that will take a few minutes if you really understand HMMs, but could take hours if you don't!