1. Solve the following problems from your text book:
 a) 4-1
 b) 4-9
 c) 4-13

2. Let \(f(x) = \begin{cases}
\frac{1}{2} \lambda e^{-\lambda x} & x > 0 \\
\frac{1}{2} \lambda e^{\lambda x} & x < 0
\end{cases} \) be probability distribution function of random variable \(X \). Find probability distribution of \(|X|\)?

3. Assume that a fair coin is tossed \(n \) times. Defining \(Y_n = |H| - |T| \) (Number of heads minus number of tails), find probability distribution function and mean of \(Y_n \).

4. We name the number \(\mu \) as median of Random Variable \(X \), if and only if we have \(P(X \leq \mu) \geq \frac{1}{2} \land P(X \geq \mu) \geq \frac{1}{2} \). Prove that such a number always exists but not necessarily unique.

5. Prove that if we have two Random Variables \(X, Y \) such that for all outcomes \(t \in S \), \(X(t) < Y(t) \) then for all values of \(w \), we will have \(F_x(w) \geq F_y(w) \).

6. Consider distribution function \(f(x) \) such that \(\forall x \leq 0 \ f(x) = 0 \). Assume that there is a constant \(\lambda > 0 \) such that \(\forall t > 0 \lim_{h \to 0} \frac{P(x \in (t, t+h) | x \in (t, \infty))}{h} = \frac{\lambda}{\lambda} \). Show that \(f(x) = \frac{1}{\lambda} e^{-\frac{1}{\lambda} x} \) for all \(x > 0 \).

7. * Players A and B are playing a game, on each turn a coin is tossed, if head, A gives B one dollar and if tail B gives A one dollar. Initially, A has a dollars and B has b dollars. What is the probability that A wins all the money from B? (The coin is not necessarily fair)

* This Problem is not relevant to random variables.