Homework 1 (Review Problems)

1. If \(A_1, A_2, \cdots, A_k \) are events with \(P(A_1 \cap A_2 \cap \cdots \cap A_{k-1}) > 0 \), prove that:
 \[
P(\bigcap_{i=1}^{k} A_i) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_k|A_1 \cap A_2 \cap \cdots \cap A_{k-1}).
\]

2. Show that if the events \(A_1, A_2, \cdots, A_n \) are independent and \(B_i \) equals to \(A_i \) or \(A_i^c \) or \(S \), then the events \(B_1, B_2, \cdots, B_n \) are also independent.

3. Assume that \(A_1, A_2, A_3, A_4 \) are independent events and \(P(A_3 \cap A_4) > 0 \), show that:
 \[
P(A_1 \cup A_2 | A_3 \cap A_4) = P(A_1 \cup A_2)
\]

4. Assume that the random variable \(X \) has a probability mass function given by
 \[
P(x) = \begin{cases}
a \times \left(\frac{1}{3}\right)^{x-2} & x = 2, 3, \ldots
0 & \text{o.w.}
\end{cases}
\]
 (a) Find the value of \(a \) which makes \(P(x) \) a valid probability mass function.
 (b) Find the cumulative distribution function \(F_X(x) \).
 (c) Find \(P(4 \leq x < 6) \).
 (d) Find \(P(x > 3) \).

5. Suppose that \(X \) is a random variable with probability density function
 \[
f_X(x) = \begin{cases}
\frac{2}{3} - a & 1 \leq x < 2
-\frac{x}{2} + b & 2 \leq x \leq 4
0 & \text{o.w.}
\end{cases}
\]
 and assume that \(E[X] = \frac{7}{5} \).
 (a) Find the values of \(a \) and \(b \) which make \(f_X(x) \) a valid probability density function.
 (b) Find \(F_X(x) \) and show that \(F_X(x) \) has the properties of a cumulative distribution function.
 (c) Find \(P(X = 3) \).
 (d) Find \(P(1.5 \leq X < 4) \).
 (e) Find \(P(1.5 \leq X < 4 | X \geq 3) \).
6. Suppose X and Y have joint density
\[f_{XY}(x, y) = \begin{cases} \frac{1}{y}e^{-x/y}e^{-y} & x > 0, y > 0 \\ 0 & \text{o.w.} \end{cases} \]

Find $P(X > 1 | Y = y)$.

7. Suppose that X and Y are two random variables.
 (a) Prove that if X and Y are independent, they are also uncorrelated.
 (b) Give an example which X and Y are uncorrelated but not independent.
 (c) If X and Y are normally distributed and independent with the same variance, prove that $X - Y$ and $X + Y$ are independent.

8. Let X represent a uniform random variable. Find $f_Y(y)$ if
 (a) $X \sim U(-2\pi, 2\pi)$ and $Y = X^3$.
 (b) $X \sim U(-2\pi, 2\pi)$ and $Y = X^4$.
 (c) $X \sim U(-\pi/2, \pi/2)$ and $Y = \tan(X)$.

9. Express the density $f_Y(y)$ of the random variable $Y = g(X)$ in terms of $f_X(x)$ if
 (a) $g(x) = |x|$.
 (b) $g(x) = e^{-x}U(x)$.

10. Assume that X and Y are two independent exponential random variables with parameters \(\lambda \) and \(\mu \) respectively.
 (a) Find the probability density function of $Z = \max(X, Y)$.
 (b) Find the probability density function of $Z = \min(X, Y)$.

11. Suppose that X and Y are two independent random variables. If $X \sim \text{uniform}(0, 2\pi)$ and $Y \sim \text{exponential}(1)$, Show that $W = \sqrt{2Y} \cos(X)$ and $Z = \sqrt{2Y} \sin(X)$ are independent random variables with standard normal distribution.

12. Show that if X and Y are two independent exponential random variables with $f_X(x) = e^{-x}U(x), f_Y(y) = e^{-y}U(y)$ and $Z = (X - Y)U(X - Y)$, then $E[Z] = \frac{1}{2}$.

13. For any two random variables X and Y, prove that:
 (a) $E[E[X|Y]] = E[X]$.
 (b) $\text{var}(X) = E[\text{var}(X|Y)] + \text{var}(E[X|Y])$.

14. Consider two random variables X and Y with positive variances.
 (a) prove that $|\rho(X, Y)| \leq 1$ where $\rho(X, Y)$ is the correlation coefficient between X and Y.
 (b) Show that if $Y - E[Y]$ is a positive or negative multiple of $X - E[X]$, then $\rho(X, Y) = 1$ or $\rho(X, Y) = -1$ respectively.
15. Assume that X_1, X_2, \ldots are identically distributed random variables with expectation μ and variance σ^2. Let N be a positive integer-valued random variable and $Y = X_1 + \ldots + X_N$.

(a) Show that $E[Y] = \mu E[N]$.
(b) Show that $\text{var}(Y) = \sigma^2 E[N] + \mu^2 \text{var}(N)$.

(The random variables X_1, X_2, \ldots and N are all independent.)

16. Assume that X_1, X_2, \ldots are a sequence of independent and identically distributed continuous random variables. Consider another random variable N such that:

$X_1 \geq X_2 \geq \cdots \geq X_{N-1} < X_N$

If $N \geq 2$, Show that $E[N] = e$. (Hint: $\sum_{i=0}^{\infty} \frac{1}{i!} = e$)

17. Let x and y be two randomly chosen natural numbers. Calculate the probability that these two numbers are relatively prime.