Epistemic Logic

And Applications to Formal Protocol Verification
Outline

- Epistemic Logic
 - Syntax
 - Semantics
 - Axioms

- Burrow-Abadi-Schroeder (BAN) Logic
 - Syntax & Semantics
 - Verification of Needham-Schroeder Protocol
Epistemic Logic

Syntax Samples:

- φ
- $K_a \varphi$
- $K_a (\neg K_b \varphi)$
- $K_a \varphi \rightarrow \varphi$
- $B_a \varphi$
Epistemic Logic (2)

- Semantics: Kripke Models
 - \(M = \langle W, \varepsilon, (R_a)_{a \in A} \rangle \)
 - \(W \): Worlds – \(P \): Proposition – \(A \): Subjects
 - \(\varepsilon : W \rightarrow P(P) \)
 - \(R_a \subseteq W \times W \)

- Semantics of \(K_a \varphi \)
 - \((M, w) \models K_a \varphi \) iff \(\forall w' \in R_a (w) : (M, w) \models \varphi \)
An Example

- Three children: a, b, c.
- φ_a : Forehead of the child “a” is dirty.
- Kripke Model:

\[
(M,110) \models K_a \varphi_b
\]
\[
(M,110) \models K_a \neg \varphi_c
\]
\[
(M,110) \models \neg K_a \varphi_a
\]
\[
(M,110) \models \neg K_a \neg \varphi_a
\]

[Ramezanian]
Axioms

- \(\varphi \) s.t. \(\varphi \) is tautology.
- (T) \(K_i \varphi \rightarrow \varphi \)
- (D) \(K_i \varphi \rightarrow \neg K_i \neg \varphi \)
- (K) \(K_i (\varphi \rightarrow \psi) \rightarrow (K_i \varphi \rightarrow K_i \psi) \)
 \[K_i \varphi \land K_i (\varphi \rightarrow \psi) \rightarrow K_i \psi \]
- (4) \(K_i \varphi \rightarrow K_i K_i \varphi \)
- (5) \(\neg K_i \varphi \rightarrow K_i \neg K_i \varphi \)
Axioms (2)

- Implication Rules:
 - (MP) \[\varphi \rightarrow (\varphi \rightarrow \psi) \]
 - \[\psi \]
 - \[\varphi \]
 - \[K_i \varphi \]

- Knowledge System: KT45 = S5
- Belief System: KD45
S5 is Sound & Complete, if:

- (T) R_i is Reflexive.
- (4) R_i is Transitive.
- (5) R_i is Euclidean.

Omniscience Problem!
BAN Logic

Aims:
- What does this protocol achieve?
- Does this protocol need more assumptions than another one?
- Does this protocol do anything unnecessary that could be left out without weakening the protocol?
- Does this protocol encrypt something that could be sent in clear without weakening the protocol?
Syntax Overview

- Syntax consists of:
 - Agent Identifiers (A, B, ...)
 - Key Identifiers (k_a, k_b, k_{ab}, ...)
 - Identifiers for atomic formulas (n_a, n_b, ...)
 - A set of formulas (X, Y, ...)

- Formulas:
 - Boolean Expressions: \(A \text{ believes } A \leftarrow^{k} B \)
 - Idealized Messages: \(\{n_a, A \leftarrow^{k} B\}_{k_as} \)
Basic Formulas

- Time epochs:
 - Past
 - Present

Formulas

- \(X_1, \ldots, X_n \) : concatenation
- \(\{X\}_k \) : \(X \) encrypted with \(k \)
Formulas – Idealized Messages

Formulas.

- \(A \xrightarrow{k} B \) : \(k \) is a key shared by \(A \) and \(B \).
- fresh(\(X \)) : \(X \) is a valid belief in the present epoch.

In fresh(\(X \)), the argument \(X \) could for instance be a nonce \(n \) or a formula of the form \(A \xleftarrow{k} B \):

- Intuitively, in these cases fresh(\(X \)) holds iff \(n \) (resp. \(k \)) has been generated in the present epoch.

The original BAN papers:

- write \(\#(X) \) instead of fresh(\(X \)).
Formulas (cont.)

- \(A \text{ receives } X \) : \(A \) receives idealized message \(X \)
- \(A \text{ said } X \) : \(A \) once sent idealized message \(X \)

- We pronounce:
 - \(A \text{ said } X \) as “\(A \text{ once said } X \)”.
 - This emphasizes that \(A \) may have sent \(X \) long ago.

- The original BAN papers:
 - write \(A \triangleleft X \) instead of \(A \text{ receives } X \),
 - pronounce “\(A \text{ sees } X \)” instead of “\(A \text{ receives } X \)”,
 - write \(A \parallel X \) instead of \(A \text{ said } X \).
Formulas (cont.)

- A believes X : A believes X
- A controls X : A has jurisdiction over X

The next sentence is provable in BAN logic:

- If A believes B controls X and A believes B believes X, then A believes X.
- B could, for instance, have jurisdiction to generate shared keys for A and B. (Then X would be $A \xrightarrow{kab} B$.)

The original BAN papers:

- write $A \models X$ instead of A believes X,
- write $A \models X$ instead of A controls X.
Rules – Receives

(Receives)

\[A \text{ receives } \{X\}_k \quad A \text{ believes } A \xleftarrow{k} B \]

\[A \text{ believes } B \text{ said } X \]

- This rule should be pronounced as:
 - If \(A \text{ receives } \{X\}_k \) and \(A \text{ believes } A \xleftarrow{k} B \)
 then \(A \text{ believes } B \text{ said } X \).

- The other proof rules are all of this format, too.

- This rule is sound under the assumption that each agent recognizes and ignores his own messages.
Rules – Fresh

(Fresh)

\[
\begin{align*}
A \text{ believes } B \text{ said } X & \quad A \text{ believes } \text{fresh}(X) \\
\hline
A \text{ believes } B \text{ believes } X
\end{align*}
\]
Rules – Fresh Inject

(Fresh Inject)

\[
\frac{A \text{ believes } \text{fresh}(X_i)}{A \text{ believes } \text{fresh}(X_1, \ldots, X_i, \ldots, X_n)}
\]

This rule says:

- If \(A\) believes that some part \(X_i\) of a formula is fresh, then she believes that the whole formula is fresh.
- Typically, \(X_i\) is a nonce \(n\), a freshly generated session key \(k\), or a basic formula of the form \(A \xleftarrow{k} B\) where \(k\) is freshly generated.
(Jurisdiction)

\[
A \text{ believes } B \text{ believes } X \quad A \text{ believes } B \text{ controls } X
\]

\[
A \text{ believes } X
\]
Rules – Selection

(R-Select)
\[A \text{ receives } (X_1, \ldots, X_i, \ldots, X_n) \]
\[A \text{ receives } X_i \]

(BB-Select)
\[A \text{ believes } B \text{ believes } (X_1, \ldots, X_i, \ldots, X_n) \]
\[A \text{ believes } B \text{ believes } X_i \]

(BS-Select)
\[A \text{ believes } B \text{ said } (X_1, \ldots, X_i, \ldots, X_n) \]
\[A \text{ believes } B \text{ said } X_i \]
Goal: A and B want to establish a short-term session key k_{ab}.

They trust the server S to generate session keys.

They share long-term keys k_{as} and k_{bs} with S.

1: A, B, N_a

2: $\{N_a, B, K_{ab}, \{K_{ab}, A\}_{K_{ba}}\}_{K_{as}}$

3: $\{K_{ab}, A\}_{K_{ba}}$

4: $\{N_b\}_{K_{ab}}$

5: $\{N_b - 1\}_{K_{ab}}$
Idealized Messages

2. \(S \rightarrow A : \{ na, A \xleftarrow{kab} B, \text{fresh}(A \xrightarrow{kab} B), T \}_{kas} \)
 where \(T = \{ A \xleftrightarrow{kab} B, \text{fresh}(A \xrightarrow{kab} B) \}_{kbs} \)

3. \(A \rightarrow B : \{ A \xleftrightarrow{kab} B, \text{fresh}(A \xrightarrow{kab} B) \}_{kbs} \)

4. \(B \rightarrow A : \{ A \xleftrightarrow{kab} B \}_{kab} \)

5. \(A \rightarrow B : \{ A \xleftarrow{kab} B \}_{kab} \)
Assumptions

\[S \text{ believes } A \xleftrightarrow{kab} B \quad \text{(I-S1)} \]
\[S \text{ believes fresh}(A \xleftrightarrow{kab} B) \quad \text{(I-S2)} \]
\[A \text{ believes } A \xleftrightarrow{kas} S \quad \text{(I-A1)} \]
\[A \text{ believes } S \text{ controls } A \xleftrightarrow{kab} B \quad \text{(I-A2)} \]
\[A \text{ believes } S \text{ controls fresh}(A \xleftrightarrow{kab} B) \quad \text{(I-A3)} \]
\[A \text{ believes fresh}(na) \quad \text{(I-A4)} \]
\[B \text{ believes } B \xleftrightarrow{kbs} S \quad \text{(I-B1)} \]
\[B \text{ believes } S \text{ controls } A \xleftrightarrow{kab} B \quad \text{(I-B2)} \]
\[B \text{ believes } S \text{ controls fresh}(A \xleftrightarrow{kab} B) \quad \text{(I-B3)} \]
Assume:

* Init *

A receives \{na, \(A \leftrightarrow_{kab} B\), fresh(\(A \leftrightarrow_{kab} B\)), T\}_kas \hspace{1cm} (R2)

Show:

A believes \(A \leftrightarrow_{kab} B\)
A believes fresh(\(A \leftrightarrow_{kab} B\))

A believes \(S\) said (\(na, A \leftrightarrow_{kab} B\), fresh(\(A \leftrightarrow_{kab} B\)), T) \hspace{1cm} (R2-1)
by (R2), (I-A1) and rule (Receives)

A believes fresh(\(na, A \leftrightarrow_{kab} B\), fresh(\(A \leftrightarrow_{kab} B\)), T) \hspace{1cm} (R2-2)
by (I-A4) and rule (Fresh Inject)

A believes \(S\) believes (\(na, A \leftrightarrow_{kab} B\), fresh(\(A \leftrightarrow_{kab} B\)), T) \hspace{1cm} (R2-3)
by (R2-1), (R2-2) and rule (Fresh)
A believes S believes $A \leftrightarrow_{kab} B$
by (R2-3) and rule (BB-Select) \hfill (R2-4)

A believes S believes fresh($A \leftrightarrow_{kab} B$)
by (R2-3) and rule (BB-Select) \hfill (R2-5)

A believes $A \leftrightarrow_{kab} B$
by (R2-4), (I-A2) and rule (Jurisdiction) \hfill (R2-6)

A believes fresh($A \leftrightarrow_{kab} B$)
by (R2-5), (I-A3) and rule (Jurisdiction) \hfill (R2-7)
After Message 3

Assume:

\[\text{Init} \]

\[B \text{ receives } \{ A \overset{kab}{\leftrightarrow} B, \text{fresh}(A \overset{kab}{\leftrightarrow} B) \}_{kbs} \]

(R3)

Show:

\[B \text{ believes } A \overset{kab}{\leftrightarrow} B \]

\[B \text{ believes fresh}(A \overset{kab}{\leftrightarrow} B) \]

\[B \text{ believes } S \text{ said } (A \overset{kab}{\leftrightarrow} B, \text{fresh}(A \overset{kab}{\leftrightarrow} B)) \]

(R3-1)

by (R3), (I-B1) and rule (Receives)

- We’d like to promote (R3-1) to:

 \[B \text{ believes } S \text{ believes } (A \overset{kab}{\leftrightarrow} B, \text{fresh}(A \overset{kab}{\leftrightarrow} B)) \]

- But we can’t, because the message does not contain a proof of freshness.

- We are stuck!
Realized Attack

// A and S exchange messages 1 and 2 normally.
A → I : \{msg_3, A, kab\}_{kbs} // I saves message 3.
I → B : \{msg_3, A, kab\}_{kbs}
// B and A exchange messages 4 and 5 normally.

// Time passes and I manages to crack kab.
I → B : \{msg_3, A, kab\}_{kbs} // I sends cracked key to B.
B generates nonce nb'
B → I : \{msg_4, nb'\}_{kab} // I completes run with B.
I → B : \{msg_5, nb'\}_{kab}

Now B thinks he shares kab with A.
But he really shares it with I. Ooops!
Questions?

- رسول رمضانیان، مدل سازی منطقی سیستم های اجتماعی، پیشنویس 1388، قابل دریافت از http://sina.sharif.edu/~ramezanian/Soicalsystems2.pdf
BAN Logic – Limitations

- BAN logic assumes that agents never publish secrets, but BAN logic does not verify this.
- BAN logic assumes that agents can recognize type flaws, but BAN logic does not verify the absence of type flaws.
 - In particular, BAN logic assumes that agents always recognize and ignore messages that they have sent themselves.
- BAN logic assumes that all protocol participants are honest. No compromised agents are considered. Attackers do not have valid keys.
- Like always in this class, BAN logic assumes perfect cryptography.