Homework 4 (Chapter 4)

Problems

1. Compute the Fourier transform of each of the following signals:

 a. \(x(t) = e^{-4|t|} \cos(5\pi t) \)

 b. \(x(t) = \begin{cases}
 -\frac{1}{2}, & t \leq -\frac{1}{2} \\
 t, & -\frac{1}{2} < t \leq \frac{1}{2} \\
 \frac{1}{2}, & \frac{1}{2} < t
 \end{cases} \)

 c. \(x(t) = \begin{cases}
 2 + t^2, & 0 < t < 1 \\
 0, & \text{otherwise}
 \end{cases} \)

 d. \(\left[\frac{\sin \pi t}{\pi t} \right] \left[\frac{\sin 2\pi (t-1)}{\pi (t-1)} \right] \)

 e. The signal \(x(t) \) depicted below:

 ![Signal Diagram]

2. Determine the continuous-time signal corresponding to each of the following transforms:

 a. \(X(j\omega) = e^{6j\omega} \frac{1}{(3 + j\omega)^2} \)

 b. \(X(j\omega) = \frac{1}{2 + 3j\omega - \omega^2} \)

 c. \(X(j\omega) = \frac{\sin^2(3\omega) \cos \omega}{\omega^2} \)

3. Assume that \(x(t) \) is purely imaginary and the Fourier transform of \(x(t) \) is \(X(j\omega) \)

 a. Prove \(X^*(j\omega) = -X(-j\omega) \)

 b. Determine whether the corresponding time-domain signal \(X(j\omega) \) is (i) real, imaginary or neither and (ii) even or odd or neither. Do this without evaluating the inverse Fourier transform of the given transform.
\[X(j\omega) = \frac{\sin 2\omega}{\omega} e^{j(2\omega - \frac{\pi}{2})} \]

4. Determine which, if any, of the real signals depicted in below have Fourier transforms that satisfy each of the following conditions:

1. \(\text{Re}\{X(j\omega)\} = 0 \)
2. \(\text{Im}\{X(j\omega)\} = 0 \)
3. There exists a real \(\alpha \) such that \(e^{j\alpha\omega}X(j\omega) \) is real
4. \(\int_{-\infty}^{\infty} X(j\omega)d\omega = 0 \)
5. \(\int_{-\infty}^{\infty} \omega X(j\omega)d\omega = 0 \)
6. \(X(j\omega) \) is periodic

5. Suppose \(g(t) = x(t) \cos t \) and the Fourier transform of the \(g(t) \) is

\[G(j\omega) = \begin{cases} 1, & |\omega| \leq 2 \\ 0, & \text{otherwise} \end{cases} \]

a. Determine \(x(t) \).

b. Specify the Fourier transform \(X_1(j\omega) \) of a signal \(x_1(t) \) such that
6. The input and the output of a causal LTI system are related by the differential equation

\[
\frac{d^2 y(t)}{dt^2} + 6 \frac{dy(t)}{dt} + 8y(t) = 2x(t)
\]

a. Find the impulse response of this system.
b. What is the response of this system if \(x(t) = te^{-2t}u(t) \)?
c. Repeat part (a) for the causal LTI system described by the equation

\[
\frac{d^2 y(t)}{dt^2} + \sqrt{2} \frac{dy(t)}{dt} + y(t) = 2 \frac{d^2 x(t)}{dt^2} - 2x(t)
\]

7. a. Determine the energy in the signal \(x(t) \) for which the Fourier transform \(X(j\omega) \) is depicted below.

\[
\begin{array}{c}
\text{X(}j\omega\text{)} \\
2 \\
1 \\
-1 \\
-2 \\
\hline
\omega
\end{array}
\]

b. Find the inverse Fourier transform of \(X(j\omega) \) of part (a).

8. Consider the impulse train

\[
p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)
\]

a. Find the Fourier series of \(p(t) \).
b. Find the Fourier transform of \(p(t) \).
c. Consider the signal \(x(t) \) that depicted below where \(T_1 < T \).
show that the periodic signal $\bar{x}(t)$, formed by periodically repeating $x(t)$, satisfies.

$$\bar{x} = x(t) \ast p(t)$$