Homework Exercise II

R.2-1 In this exercise we study the deterministic bit-fixing routing strategy, that is, the bit-fixing strategy where we do not first route each message to a random intermediate destination, but where we immediately route to the final destination.

(i) Suppose that $\text{dest}(i)$ is obtained by taking the “complement” of the bitstring for i: every 1 is replaced by a 0, and vice versa. Analyze the number of rounds it takes until all messages have reached their destination (in the deterministic bit-fixing strategy).

(ii) Now consider the case where $\log n$ is even and the destinations are defined as follows. Let $2k = \log n$. Consider a processor i and let $b_1 \ldots b_k b_{k+1} \ldots b_k$ denote the binary representation of processor i. Then $\text{dest}(i)$ has binary representation $b_{k+1} \ldots b_k b_1 \ldots b_k$ (that is, the first half and the second half of the binary representation are exchanged). Show that the deterministic bit-fixing strategy needs $\Omega(\sqrt{n})$ rounds before all messages have reached their destination.

R.2-2 Let $N := \{1, \ldots, n\}$ and let $f : N \times N \to \mathbb{R}$ be a function. Assume for simplicity that $f(i, j) \neq f(i', j')$ if $(i, j) \neq (i', j')$. We want to compute the value $M := \min_{1 \leq i, j \leq n} f(i, j)$. This can of course easily be done in $O(n^2)$ time, by simply evaluating all $f(i, j)$’s—we assume that evaluating $f(i, j)$ takes $O(1)$ time—and then finding the minimum of all these values. Now suppose we have a magic subroutine $\text{Test}(i, x)$ available that returns true if $\min_{1 \leq j \leq n} f(i, j) \leq x$ and false otherwise. The function Test runs in $T^*(n)$ time.

(i) Describe a randomized incremental algorithm to compute M that runs in $O(n \log n + nT^*(n))$ expected time. Argue that your algorithm is correct and show that your algorithm runs in the required time.

Hint: Define $F(i) = \min_{1 \leq j \leq i} f(i, j)$ and observe that $M = \min_{1 \leq i \leq n} F(i)$.

(ii) Describe a randomized divide-and-conquer algorithm to compute M that runs in $O(n \log n + nT^*(n))$ expected time. Argue that your algorithm is correct and show that your algorithm runs in the required time.

(iii) **Bonus question: you do not have to solve this question, but if you can solve it you get bonus points.** Give a deterministic algorithm for this problem that runs in $O(n \log n + nT^*(n))$ time in the worst case.

R.2-3 In a skip list, each element in a list \mathcal{L}_i is promoted to \mathcal{L}_{i+1} with probability $1/2$. Hence, if n_i denotes the number of elements in \mathcal{L}_i then the expected number of elements in \mathcal{L}_{i+1} is $n_i/2$. The actual number of elements in \mathcal{L}_{i+1} may deviate from this, of course, depending on the random choices made by the algorithm.

Suppose that, instead of promoting each element independently with probability $1/2$, we let \mathcal{L}_{i+1} be a random subset of \mathcal{L}_i of size $\lfloor n/2 \rfloor$. Notice that this would imply that the height of the skip list is guaranteed to be at most $\lfloor \log n \rfloor$ in the worst case. Is this a good idea? Explain your answer briefly.

R.2-4 We want to store a set S of n elements, where each element $x_i \in S$ has a key $\text{key}[x_i]$, in a dictionary. Suppose that some elements are searched for more often than others. Let p_i denote the probability that we search for x_i, and assume p_i is known for each x_i. We
want to use this knowledge to make the search time for elements with a high probability to be searched smaller than the search time for elements with a low probability to be searched.

Sketch a method for achieving this when the dictionary is implemented as a treap, and sketch a method for achieving this when the dictionary is implemented as skip list. (Keep your answer short: a few lines for the treap and a few lines for the skip list is sufficient: I do not expect an analysis of the search times that would result if your idea is used.)

R.2-5 You are hosting a web service. Whenever someone visits your website an algorithm called LV-Alg is executed. LV-Alg is a Las Vegas algorithm whose expected running time is 2 seconds.

(i) Give a bound on the probability that the actual running time of LV-Alg exceeds 1 hour.

(ii) What is the expected number of visitors before one of them has to wait 1 hour for LV-Alg to finish?

(iii) Now consider the following algorithm, which we call LV-Alg-$With$-$Restart$: Start running LV-Alg. If the algorithm terminates within 4 seconds, then we are done and so we stop. But if the algorithm runs for 4 seconds without terminating then we abort the execution, and start all over again. (Thus LV-Alg is repeated until we get a run terminating within 4 seconds.)

Give a bound on the probability that the running time of LV-Alg-$With$-$Restart$ exceeds 2 minutes. (Assume that testing whether the algorithm runs for 4 seconds, aborting the execution, and restarting does not take any time.)

(iv) What is the expected number of visitors before one of them has to wait for more than 2 minutes if we use the strategy from (iii)?

R.2-6 Consider the following randomized variant of $InsertionSort$, where we first compute a random permutation and then apply the normal $InsertionSort$ algorithm:

Algorithm $Rand$-$InsertionSort$(A)
1. \triangleright Sorts an array $A[1..n]$ in non-decreasing order
2. $RandomPermutation(A)$
3. for $j \leftarrow 2$ to n
4. do $key \leftarrow A[j]; i \leftarrow j - 1$
5. while ($i > 0$) and ($A[i] > key$)
6. do $A[i + 1] \leftarrow A[i]; i \leftarrow i - 1$
7. $A[i + 1] \leftarrow key$

Analyze the expected number of comparisons made by the algorithm. (An asymptotic analysis is not sufficient: you should analyze the exact number of expected comparisons.)