Verification of Reactive Systems

Ali Movaghar
Department of Computer Engineering
Sharif University of Technology
Spring 2014
Main references
Main References

Some Similar Recent courses in North America

Some Similar Recent courses in North America

- Program Verification, CS476, Fall 2013-4, University of Illinois at Urbana-Champaign, Department of Computer Science. Being taught by Jose Meseguer.

- Techniques for Program Analysis and Verification, CS357, Fall 2013-4, Stanford University, Department of Computer Science. Taught by Dill and Aiken.
Some Similar Recent courses in North America

- Computer-Aided Verification, CS745, Fall 2009, University of Waterloo, School of Computer Science. Taught by Joe Atlee.
Some Similar Recent courses in North America

- Software Verification and Testing, CSC410, Winter 2013, University of Toronto, Department of Computer Science. Being taught by Azadeh Farzan.

- Topics in Verification (Game Theory in Formal Verification), CSC2226H, Winter 2014, University of Toronto, Department of Computer Science. Being taught by Azadeh Farzan.
Teaching Assistants

To be announced.
Grading Policy

- Programming Assignments: 10%
- Research Presentations: 10%
- Final Research Paper: 20%
- Midterm Exam: 20%
- Final Exam: 40%
A design is a process of getting a (more detailed) realization from a given specification.

An implementation can be viewed as the most detailed realization.
Design and Validation

- Validation is a process of ensuring that a realization satisfies its specifications.
- Validation is mainly used in system design and implementation.
- Design of a complex system may happen in many levels.
- Implementation may be viewed as the lowest level of the design.
Verification and Testing

- **Validation** has three main methods: verification, evaluation, and testing.
- **Verification** is a formal mathematical method to prove that a realization satisfies its specifications.
- **Evaluation** is a method for finding how good a system behaves.
- **Testing** is a method of proving that a specification does not satisfy its specifications.
- **Testing, verification, and evaluation** are usually complementary.
So, why not test?

- Testing only shows presence of bugs not their absence!
What are formal methods?

- Techniques for analyzing systems, based on some mathematics.

- This does not mean that the user must be a mathematician.

- Some of the work is done in an informal way, due to complexity.
Formal Methods

Mathematically-based techniques for describing properties of systems

- Provide framework for
 - Specifying systems (and thus notion of correctness)
 - Developing systems
 - Verifying correctness
 - Of implementation w.r.t. the specification
 - Equivalence of different implementations
- Reasoning is based on logic
 - Amenable to machine analysis and manipulation
 - In principle, can verify everything that is true in the system!
 - Given enough time, skill and patience
Formal Verification

- Formal verification seeks to establish a mathematical proof that a system works correctly. A formal approach provides:
 1) A system model (language) to describe the system,
 2) A specification model (language) to describe the correctness requirement,
 3) An analysis technique to verify that the system meets its specification.
Why aren’t FMs used more?

“Formal methods can revolutionize development!”

“Formal methods are difficult, expensive, not widely useful and for safety-critical systems only”
... and one more problem

- Need to know what to build (specification) before you start building

 “water-fall” model

- Unrealistic!
 - May need to discover what to build iteratively
 - Software changes all the time
Formal Methods “Light”

- Partial application of formal methods
 - only parts of systems are specified
- Emphasis on analysis of some properties
 - security, fairness, deadlock freedom, rather than complete verification
- Debugging rather than assurance
- Automation

Most successful lightweight technique: Model-Checking
There are two major methods for verification: deductive method and Model checking.

In deductive method, the problem is formulated as proving a theorem in a mathematical proof system.

In the method of model checking, the behavior of the system is checked algorithmically through exhaustive search of all reachable states.
Reactive Systems

- A reactive system is a system whose role is to maintain an ongoing interaction with its environment.

- The family of reactive systems include most of the classes of systems whose correct and dependable construction is to be considered to be particularly challenging, including concurrent and real-time systems, embedded and process control systems, and operating systems.
Reactive Systems Properties

- Reactive systems have usually the following properties:
 - Concurrency
 - Timeliness
 - High dependability requirements
Formal Verification

- Formal verification seeks to establish a mathematical proof that a system works correctly. A formal approach provides:
 1) A system model (language) to describe the system,
 2) A specification model (language) to describe the correctness requirement,
 3) An analysis technique to verify that the system meets its specification.
System Models

- Transition Systems (Automata)
- Process Algebras and their extensions
- Communicating Sequential Processes (CSP)
- Calculus of Communicating Systems (CCS)
- Actors
- Petri Nets and their extensions
- Other more recent models
Specification Models

- Temporal Logics and their extensions
- Linear Temporal Logics (LTLs)
- Computational Tree Logics (CTLs)
- CTL*
- Other more recent models