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History & Philosophy

 Started by gamblers’ dispute

 Probability as a game analyzer !

 Formulated by B. Pascal and P. Fermet

 First Problem (1654) :

 “Double Six” during 24 throws

 First Book (1657) :

 Christian Huygens, “De Ratiociniis in Ludo 

Aleae”, In German, 1657.



History & Philosophy (Cont’d)

 Rapid development during 18th Century

 Major Contributions:

 J. Bernoulli (1654-1705)

 A. De Moivre (1667-1754)



History & Philosophy (Cont’d)

 A renaissance: Generalizing the concepts 

from mathematical analysis of games to 

analyzing scientific and practical 

problems: P. Laplace (1749-1827) 

 New approach first book:

 P. Laplace, “Théorie Analytique des 

Probabilités”, In France, 1812.



History & Philosophy (Cont’d)

 19th century’s developments:

 Theory of errors

 Actuarial mathematics

 Statistical mechanics

 Other giants in the field:

 Chebyshev, Markov and Kolmogorov 



History & Philosophy (Cont’d)

 Modern theory of probability (20th) :

 A. Kolmogorov : Axiomatic approach

 First modern book:

 A. Kolmogorov, “Foundations of Probability 
Theory”, Chelsea, New York, 1950

 Nowadays, Probability theory as a part 
of a theory called Measure theory !



History & Philosophy (Cont’d)

 Two major philosophies:

 Frequentist Philosophy

 Observation is enough

 Bayesian Philosophy

 Observation is NOT enough

 Prior knowledge is essential

 Both are useful



History & Philosophy (Cont’d)

Frequentist philosophy

 There exist fixed 

parameters like mean,.

 There is an underlying 

distribution from which 

samples are drawn

 Likelihood functions(L()) 

maximize parameter/data

 For Gaussian distribution 

the  L() for the mean 

happens to be 1/Nixi or 

the average.

Bayesian philosophy

 Parameters are variable

 Variation of the parameter 

defined by the prior 

probability

 This is combined with 

sample data p(X/) to 

update the posterior 

distribution p(/X).   

 Mean of the posterior, 

p(/X),can be considered a 

point estimate of . 



History & Philosophy (Cont’d)

 An Example:
 A coin is tossed 1000 times, yielding 800 heads and 200 

tails. Let p = P(heads) be the bias of the coin. What is p?

 Bayesian Analysis
 Our prior knowledge (belief) :               (Uniform(0,1))

 Our posterior knowledge :

 Frequentist Analysis

 Answer is an estimator     such that

 Mean : 

 Confidence Interval :

  1p

   200800 1 ppnObservatiop 
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History & Philosophy (Cont’d)

 Further reading:

 http://www.leidenuniv.nl/fsw/verduin/stat

hist/stathist.htm

 http://www.mrs.umn.edu/~sungurea/intro

stat/history/indexhistory.shtml

 www.cs.ucl.ac.uk/staff/D.Wischik/Talks/h

istprob.pdf

http://www.leidenuniv.nl/fsw/verduin/stathist/stathist.htm
http://www.mrs.umn.edu/~sungurea/introstat/history/indexhistory.shtml
http://www.cs.ucl.ac.uk/staff/D.Wischik/Talks/histprob.pdf
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Random Variables

 Probability Space

 A triple of 

 represents a nonempty set, whose elements are 

sometimes known as outcomes or states of nature

 represents a set, whose elements are called

events. The events are subsets of . should be a

“Borel Field”.

 represents the probability measure.

 Fact:

 PF,,



F
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Random Variables (Cont’d)

 Random variable is a “function” (“mapping”)

from a set of possible outcomes of the 

experiment to an interval of real (complex) 

numbers.

 In other words :
 
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Random Variables (Cont’d)

 Example I :

 Mapping faces of a dice to the first six 

natural numbers.

 Example II :

 Mapping height of a man to the real 

interval (0,3] (meter or something else).

 Example III :

 Mapping success in an exam to the 

discrete interval [0,20] by quantum 0.1 .



Random Variables (Cont’d)

 Random Variables

 Discrete

 Dice, Coin, Grade of a course, etc.

 Continuous

 Temperature, Humidity, Length, etc.

 Random Variables

 Real

 Complex
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Density/Distribution Functions

 Probability Mass Function (PMF)

 Discrete random variables

 Summation of impulses

 The magnitude of each impulse represents 

the probability of occurrence of the outcome

 Example I:

 Rolling a fair dice
1 2 3 4 5 6
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Density/Distribution Functions (Cont’d)

 Example II:

 Summation of two fair dices

 Note : Summation of all probabilities should 

be equal to ONE. (Why?)

2 73 4 5 6

6
1



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
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 XP

8 9 10 11 12



Density/Distribution Functions (Cont’d)

 Probability Density Function (PDF)

 Continuous random variables

 The probability of occurrence of                        

will be
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Density/Distribution Functions (Cont’d)

 Some famous masses and densities

 Uniform Density

 Gaussian (Normal) Density
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Density/Distribution Functions (Cont’d)

 Binomial Density

 Poisson Density
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Density/Distribution Functions (Cont’d)

 Cauchy Density

 Weibull Density
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Density/Distribution Functions (Cont’d)

 Exponential Density

 Rayleigh Density
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Density/Distribution Functions (Cont’d)

 Expected Value

 The most likelihood value

 Linear Operator

 Function of a random variable

 Expectation

   

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Density/Distribution Functions (Cont’d)

 PDF of a function of random variables

 Assume RV “Y” such that

 The inverse equation               may have more 

than one solution called

 PDF of “Y” can be obtained from PDF of “X” as 

follows

 XgY 

 YgX 1
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Density/Distribution Functions (Cont’d)

 Cumulative Distribution Function (CDF)

 Both Continuous and Discrete

 Could be defined as the integration of PDF
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Density/Distribution Functions (Cont’d)

 Some CDF properties

 Non-decreasing

 Right Continuous

 F(-infinity) = 0

 F(infinity) = 1
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Joint/Conditional Distributions

 Joint Probability Functions

 Density

 Distribution

 Example I

 In a rolling fair dice experiment represent the 

outcome as a 3-bit digital number “xyz”.
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Joint/Conditional Distributions (Cont’d)

 Example II

 Two normal random variables

 What is “r” ?

 Independent Events (Strong Axiom)
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Joint/Conditional Distributions (Cont’d)

 Obtaining one variable density functions

 Distribution functions can be obtained just

from the density functions. (How?)
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Joint/Conditional Distributions (Cont’d)

 Conditional Density Function

 Probability of occurrence of an event if another 

event is observed (we know what “Y” is).

 Bayes’ Rule
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Joint/Conditional Distributions (Cont’d)

 Example I

 Rolling a fair dice

 X : the outcome is an even number

 Y : the outcome is a prime number

 Example II

 Joint normal (Gaussian) random variables
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Joint/Conditional Distributions (Cont’d)

 Conditional Distribution Function

 Note that “y” is a constant during the integration.
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Joint/Conditional Distributions (Cont’d)

 Independent Random Variables

 Remember! Independency is NOT heuristic.
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Joint/Conditional Distributions (Cont’d)

 PDF of a functions of joint random variables

 Assume that 

 The inverse equation set                      has a set of 

solutions

 Define Jacobean matrix as follows

 The joint PDF will be
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Correlation

 Knowing about a random variable “X”, how 

much information will we gain about the 

other random variable “Y” ?

 Shows linear similarity

 More formal: 

 Covariance is normalized correlation

   YXEYXCrr ., 

      YXYX YXEYXEYXCov  ...),( 



Correlation (cont’d)

 Variance
 Covariance of a random variable with itself

 Relation between correlation and covariance

 Standard Deviation
 Square root of variance

    22
XX XEXVar  
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Correlation (cont’d)

 Moments
 nth order moment of a random variable “X” is the 

expected value of “X
n
”

 Normalized form

 Mean is first moment

 Variance is second moment added by the 
square of the mean

  n
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Important Theorems

 Central limit theorem

 Suppose i.i.d. (Independent Identically Distributed) RVs 

“Xk” with finite variances

 Let 

 PDF of “Sn” converges to a normal distribution as 

n increases, regardless to the density of RVs.

 Exception : Cauchy Distribution (Why?)
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Important Theorems (cont’d)

 Law of Large Numbers (Weak)

 For i.i.d. RVs “Xk”
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Important Theorems (cont’d)

 Law of Large Numbers (Strong)

 For i.i.d. RVs “Xk”

 Why this definition is stronger than before?
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Important Theorems (cont’d)

 Chebyshev’s Inequality

 Let “X” be a nonnegative RV

 Let “c” be a positive number

 Another form:

 It could be rewritten for negative RVs. (How?)
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Important Theorems (cont’d)

 Schwarz Inequality

 For two RVs “X” and “Y” with finite second 

moments

 Equality holds in case of linear dependency.

     222
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