Stochastic Processes

Review of Elementary Probability
Lecture 1
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History & Philosophy

Started by gamblers’ dispute

Probability as a game analyzer !
Formulated by B. Pascal and P. Fermet

First Problem (1654) :
B “Double Six” during 24 throws

First Book (1657) :

B Christian Huygens, “De Ratiociniis in Ludo
Aleae”, In German, 1657.




History & Philosophy (contq)

Rapid development during 18 Century

Major Contributions:
B J. Bernoulli (1654-1705)
B A. De Moivre (1667-1754)




History & Philosophy (Conta)

A renaissance: Generalizing the concepts
from mathematical analysis of games to
analyzing scientific and practical
problems:P. Laplace (1749-1827)

New approach first book:

B P. Laplace, “Théorie Analytique des
Probabilites”, In France, 1812.




History & Philosophy (contq)

19tk century’s developments:
B Theory of errors

B Actuarial mathematics
B Statistical mechanics

Other giants in the field:
B Chebyshev, Markov and Kolmogorov




History & Philosophy (contq)

Modern theory of probability (20t2) :

B A. Kolmogorov : Axiomatic approach

First modern book;

B A. Kolmogorov, “Foundations of Probability
Theory”, Chelsea, New York, 1950

1 Nowadays, Probability theory as a part
CI of a theory called Measure theory !




History & Philosophy (contq)

Two major philosophies:

B Frequentist Philosophy
[J Observationis enough

B Bayesian Philosophy
[J Observation 1s NOT enough
[J Prior knowledge 1s essential

Ei Both are useful




History & Philosophy (conta)

Frequentist philosophy

O

O

There exist fixed
parameters like mean,0.

There 1s an underlying
distribution from which
samples are drawn

Likelihood functions(L(0))
maximize parameter/data

For Gaussian distribution
the L(0) for the mean
happens to be 1/N>_.x; or

the average.

Bayesian philosophy

L
O

Parameters are variable

Variation of the parameter
defined by the prior
probability

This 1s combined with
sample data p(X/0) to
update the posterior
distribution p(6/X).

Mean of the posterior,
p(6/X),can be considered a
point estimate of 0.




History & Philosophy (contq)

An Example:

B A coinis tossed 1000 times, yielding 800 heads and 200
tails. Let p = P(heads) be the bias of the coin. What 1s p?

Bayesian Analysis
B Our prior knowledge (belief) :  7z(p)=12(Uniform(0,1))
B Our posterior knowledge : z(p/Observation)= p®°(1— p)*®

Frequentist Analysis
B Answer is an estimator P such that
[0 Mean: E[f)]:O.S
0 Confidence Interval : P(0.774< p <0.826)>0.95




History & Philosophy (conta)

Further reading:

B http://www.léidenuniv.nl/fsw/verduin/stat
hist/stathist.htm

B http:// www.mrs.umn.edu/~sungurea/intro
stat/history/indexhistory.shtml

B www.cs.uel.ac.uk/staft/DD. Wischik/Talks/h
1stprob.pdf



http://www.leidenuniv.nl/fsw/verduin/stathist/stathist.htm
http://www.mrs.umn.edu/~sungurea/introstat/history/indexhistory.shtml
http://www.cs.ucl.ac.uk/staff/D.Wischik/Talks/histprob.pdf

Outline

History/Philosophy
Random Variables

Density/Distribution Functions

Joint/Conditional Distributions

Correlation

Important Theorems




Random Variables

Probability Space
B A triple of (QF,P)

[0 O represents a nonempty set, whose elements are
sometimes known as outcomes or states of nature

[0 F represents a set, whose elements are called

events. The events are subsets of Q. F should be a
“Borel Field”.

[0 P represents the probability measure.

E i Fact: P(Q)=1




Random Variables «conta

Random variable is a “function” (“mapping”)
from a set of possible outcomes of the
experiment to an interval of real (complex)
numbers.

In other words : {F <P(Q) : {
| =R

Outcomes

X F->l
X(B)=r

>
Real Line




Random Variables «conta

Example I :

B Mapping faces of a dice to the first six
natural numbers.

Example I :

B Mapping height of a man to the real
interval (0,3] (meter or something else).

Example 111 :

B Mapping success in an exam to the
discrete interval [0,20] by quantum 0.1 .




Random Variables «conta

Random Variables
B Discrete

[0 Dice, Coin, Grade of a course, etc.

B Continuous
[J Temperature, Humidity, Length, etc.

Random Variables

B Real
B Complex
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Density/Distribution Functions

Probability Mass Function (PMF)

B Discrete random variables

B Summation of impulses

B The magnitude of each impulse represents

the probability of occurrence of the outcome
PX])

Example I:

B Rolling a fair dice
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Density/Distribution Functions contd)

Example 1I:
B Summation of two fair dices
P(X)
| A
6 7w 1Y

Note : Summation of all probabilities should
be equal to ONE. (Why?)




Density/Distribution Functions (conta)

Probability Density Function (PDF)

B C(Continuous random variables

B The probability of occurrence of X, e (x—%, x+%j
will be P(x)dx < e

PX)
I\




Density/Distribution Functions (conta)

Some famous masses and densities

B Uniform Density P(X)
A
1 : 1
f(x)zg.(u (end )~U(begin)) A = : |
B Gaussian (Normal) Density ’ > X(B)




Density/Distribution Functions (conta)

A
(0)=( 3 J - ppat I | |
A T T 1 +@ .
0 N.p
B Poisson Density f (X)

—

A ﬂx '

"= ) ;

Note: x e N = I(x+1)=x! i
- X

A
N] N n n —Np(N-p)n
n

Important Fact: ForSufficiently largeN : (



Density/Distribution Functions (conta)




Density/Distribution Functions (conta)

B Exponential Density

— X
f(x)=2e™U(x)= {l.e £
0 x<0

B Rayleigh Density




Density/Distribution Functions (conta)

Expected Value
B The most likelihood value

E[X]z_ofx.fx (x)dx

B Linear Operator

Ela.X +b]=a.E[X ]+b

Function of a random variable
B Expectation

E[g<x>]:_]°g<x>.fx(x>dx




Density/Distribution Functions (conta)

PDF of a function of random variables
B Assume RV “Y” such that Y =9(X)

B The inverse equation X=9"(Y) may have more
than one solution called X, X,.... X,

B PDF of “Y” can be obtained from PDF of “X” as
follows

£, (y)= Z”: felx)

=L absolute value(;(g(x) )

X:Xi




Density/Distribution Functions (conta)

[0 Cumulative Distribution Function (CDF)

B Both Continuous and Discrete
B Could be defined as the integration of PDF

CDF(x)=Fy (x)=P(X.< x)
F ()= [ ()0
PDF(X) -
A

X




Density/Distribution Functions contd)

Some CDF properties

B Non-decreasing
B Right Continuous
B F(-infinity) =0

B F(@nfinity) =1
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Joint/Conditional Distributions

Joint Probability Functions
B Density
B Distribution

Fyy(x,y)=P(X <x and Y <y)

Example I = L _Ioof v (X, y )dydx

B In a rolling fair dice experiment represent the
outcome as a 3-bit digital number “xyz".

% x=0y=0 Xyz
0 1 1—- 001
7y x=0y= 25010
fyy (X y)= % Xx=1y=0 3011
4 —100
x=Ly=1
% y 5—-101
o ow 0




Joint/Conditional Distributions «conta

Example 11

B Two normal random variables

1 ( (x—pty ¥ (y—uzy)2 2r(X—ﬂx)(y—ﬂy)JJ

e_[2(1r2)( oy’ \ Oy Ox-Oy

fx v (x,y)=

2
27.6y.0yN1—T

B Whatis ¢’ ?

Independent Events (Strong Axiom)

fy v (X, Y): fy (X) fy (Y)




Joint/Conditional Distributions «conta

Obtaining one variable density functions

fx (x)= T fx .y (x, y)dy

fy (y)= _]9 F (6 Y )dx

Distribution functions can be obtained just
from the density functions. (How?)




Joint/Conditional Distributions «conta

Conditional Density Function

B Probability of occurrence of an event if another
event is observed (we know what “Y” 1s).

f ,
Ty (X| Y): Xf: E);)y)
B Bayes’ Rule
oy LYIX )L Ty (X
fX|Y(X|y): o0 Y|X( | ) X( )

_j Ty |x (y|x) fy (X)dx




Joint/Conditional Distributions «conta

Example 1

B Rolling a fair dice
[0 X :the outcome is an even number

[J Y : the outcome 1s a prime number

P(X]Y )= R(x.Y)_ 75 _1

P(Y) % 3

Example 11

B Joint normal (Gaussian) random variables

B 1 (x—,uxrxyyy)z]
1 [Z(II’Z)k Oy oy
S ———y




Joint/Conditional Distributions «conta

Conditional Distribution Function

Fypv (Xy)=P(X <x while Y =y)

- Ifx|Y (X|y)dx

X

_. fx .y (t, y)dt

—00
o0

_. fx .y (t, y)dt

—0o0

B Note that “y” is a constant during the integration.




Joint/Conditional Distributions «conta

Independent Random Variables

Ty (X‘y): fx{:: E);)y)

by (x)fy (y)
fy (Y)
= fy (X)

Remember! Independency 1s NOT heuristic.




Joint/Conditional Distributions «conta

PDF of a functions of joint random variables

Assume that (U,V)=g(X,Y)
The inverse equation set (X.Y)=g'U\V) has a set of

solutions (XgYah(X2.Y2 ) (X0, Ys) fag o
Define Jacobean matrix as follows J = a;< a;(
X o
The joint PDF will be
n f Y2
fU,V(u’V):Z X,Y(Xl’yl / \

= absolute determinant(J], ., y_))
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Correlation

Knowing about a random variable “X”, how
much 1nformation will we gain about.the
other random variable “Y” ?

Shows linear similarity

More formal:  Crr(X,Y)=E[X.Y]

Covariance 1s normalized correlation

Cov(X,Y) = E[(X — g MY — s )= E[X.Y |- a1




Correlation ontd)

Variance
B C(Covariance of a random variable with i1tself

Var(X)=6y* = E[(X — [y )2]

Relation between correlation and covariance

E[XZ]:GXZ +,uX2

Standard Deviation
B Square root of variance




Correlation (ontd)

Moments
B nth order moment of a random variable “X” i1s the
expected value of “X”

M, =E(X")

B Normalized form

My = E(X = ')

Mean 1is first moment
Ei Variance 1s second moment added by the

square of the mean
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Important Theorems

Central limit theorem

] Suppose 1.1.d. (Independent Identically Distributed) RVs
“Xi’ with finite variances

n
B Let S,=)>a,X,
i=1

B PDF of “S,” converges to a normal distribution as
n increases, regardless to the density of RVs.

Exception : Cauchy Distribution (Why?)




Important Theorems (contd)

Law of Large Numbers (Weak)
B Foriid. RVs “Xy”

Il
o

- 1=1
&>0 lim Nn—>00 Prs — Hyx > &




Important Theorems (contd)

Law of Large Numbers (Strong)
B Foriid. RVs “Xy”

Pr< lim = -

Why this definition is stronger than before?




Important Theorems (contd)

Chebyshev’s Inequality
B Let “X” be a nonnegative RV
B Let“c’ be a positive number

Pr{X >¢}< % E[X]

Another form:

2

Pr{|X —yx|>g}ﬁ%

It could be rewritten for negative RVs. (How?)




Important Theorems (contd)

Schwarz Inequality

B Fortwo RVs “X” and “Y” with finite second
moments

efx.y P <glx2| g}y ?]

B Equality holds in case of linear dependency.
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