Ensemble Learning
Introduction

In our daily life
- Asking different doctors’ opinions before undergoing a major surgery
- Reading user reviews before purchasing a product
- There are countless number of examples where we consider the decision of mixture of experts.

Ensemble systems follow exactly the same approach to data analysis.

Problem Definition
- Given
 - Training data set \(D \) for supervised learning
 - \(D \) drawn from common instance space \(\mathcal{X} \)
 - Collection of inductive learning algorithms
- Hypotheses produced by applying inducers to \(s(D) \)
 - \(s: \mathcal{X} \text{vector} \rightarrow \mathcal{X'} \text{vector} \) (sampling, transformation, partitioning, etc.)
- Return: new classification algorithm (not necessarily \(\in H \) for \(x \in \mathcal{X} \) that combines outputs from collection of classification algorithms

Desired Properties
- Guarantees of performance of combined prediction

Two Solution Approaches
- Train and apply each classifier; learn combiner function (s) from result
- Train classifier and combiner function (s) concurrently
Why We Combine Classifiers? [1]

- **Reasons for Using Ensemble Based Systems**
 - **Statistical Reasons**
 - A set of classifiers with similar training data may have different generalization performance.
 - Classifiers with similar performance may perform differently in field (depends on test data).
 - In this case, averaging (combining) may reduce the overall risk of decision.
 - In this case, averaging (combining) may or may not beat the performance of the best classifier.
 - **Large Volumes of Data**
 - Usually training of a classifier with a large volumes of data is not practical.
 - A more efficient approach is to
 - Partition the data into smaller subsets
 - Training different Classifiers with different partitions of data
 - Combining their outputs using an intelligent combination rule
 - **To Little Data**
 - We can use resampling techniques to produce non-overlapping random training data.
 - Each of training set can be used to train a classifier.
 - **Data Fusion**
 - Multiple sources of data (sensors, domain experts, etc.)
 - Need to combine systematically,
 - Example : A neurologist may order several tests
 - MRI Scan,
 - EEG Recording,
 - Blood Test
 - A single classifier cannot be used to classify data from different sources (heterogeneous features).
Why We Combine Classifiers? [2]

- **Divide and Conquer**
 - Regardless of the amount of data, certain problems are difficult for solving by a classifier.
 - Complex decision boundaries can be implemented using ensemble Learning.
Diversity

- **Strategy of ensemble systems**
 - Creation of many classifiers and combine their outputs in a such a way that combination improves upon the performance of a single classifier.

- **Requirement**
 - The individual classifiers must make errors on different inputs.
 - **If errors are different then strategic combination of classifiers can reduce total error.**

- **Requirement**
 - We need classifiers whose decision boundaries are adequately different from those of others.
 - Such a set of classifiers is said to be *diverse*.

- **Classifier diversity can be obtained**
 - Using different training data sets for training different classifiers.
 - Using unstable classifiers.
 - Using different training parameters (such as different topologies for NN).
 - Using different feature sets (such as random subspace method).

- **G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods: a survey and categorization,” Information fusion, Vo. 6, pp. 5-20, 2005.**
Classifier diversity using different training sets
Diversity Measures (1)

- **Pairwise measures** (*assuming that we have T classifiers*)

<table>
<thead>
<tr>
<th></th>
<th>(h_j) is correct</th>
<th>(h_j) is incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_i) is correct</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>(h_i) is incorrect</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

- **Correlation** (Maximum diversity is obtained when \(\rho = 0 \))

\[
\rho_{i,j} = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(c+d)}} \quad 0 \leq \rho \leq 1
\]

- **Q-Statistics** (Maximum diversity is obtained when \(Q = 0 \)) \(|\rho| \leq |Q|\)

\[
Q_{i,j} = \frac{(ad - bc)}{(ad + bc)}
\]

- **Disagreement measure** (the prob. that two classifiers disagree)

\[
D_{i,j} = b + c
\]

- **Double fault measure** (the prob. that two classifiers are incorrect)

\[
DF_{i,j} = d
\]

- **For a team of T classifiers, the diversity measures are averaged over all pairs**:

\[
D_{avg} = \frac{2}{T(T-1)} \sum_{i=1}^{T-1} \sum_{j=1}^{T} D_{i,j}
\]
Diversity Measures (2)

- Non-Pairwise measures (assuming that we have T classifiers)
 - Entropy Measure:
 - Makes the assumption that the diversity is highest if half of the classifiers are correct and the remaining ones are incorrect.
 - Kohavi-Wolpert Variance
 - Measure of difficulty

- Comparison of different diversity measures

<table>
<thead>
<tr>
<th>Name</th>
<th>\uparrow / \downarrow</th>
<th>P</th>
<th>S</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-statistic</td>
<td>Q</td>
<td>\downarrow</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>ρ</td>
<td>\downarrow</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Disagreement measure</td>
<td>D</td>
<td>\uparrow</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Double-fault measure</td>
<td>DF</td>
<td>\downarrow</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kohavi-Wolpert variance</td>
<td>kw</td>
<td>\uparrow</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Interrater agreement</td>
<td>κ</td>
<td>\downarrow</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Entropy measure</td>
<td>Ent</td>
<td>\uparrow</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Measure of difficulty</td>
<td>θ</td>
<td>\downarrow</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Generalised diversity</td>
<td>GD</td>
<td>\uparrow</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Coincident failure diversity</td>
<td>CFD</td>
<td>\uparrow</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Note: The arrow specifies whether diversity is greater if the measure is lower (\downarrow) or greater (\uparrow). ‘P’ stands for ‘Pairwise’ and ‘S’ stands for ‘Symmetrical’.
Diversity Measures (3)

- **No Free Lunch Theorem**: No classification algorithm is universally correlates with the higher accuracy.
 - Conclusion: There is no diversity measure that consistently correlates with the higher accuracy.
 - Suggestion: In the absence of additional information, the Q statistics is suggested because of its intuitive meaning and simple implementation.

- **Reference**:
Design of Ensemble Systems

- Two key components of an ensemble system
 - Creating an ensemble by creating *weak learners*
 - Bagging
 - Boosting
 - Stacked generalization
 - Mixture of experts
 - Combination of classifiers' outputs
 - Majority Voting
 - Weighted Majority Voting
 - Averaging

- What *is* a weak classifier?
 - One not guaranteed to do better than random guessing (1 / number of classes)
 - Goal: combine multiple weak classifiers, get one at least as accurate as strongest

- Combination Rules
 - Trainable vs. Non-Trainable
 - Labels vs. Continuous outputs
In ensemble learning, a rule is needed to combine outputs of classifiers.

- **Classifier Selection**
 - Each classifier is trained to become an expert in some local area of feature space.
 - Combination of classifiers is based on the given feature vector.
 - Classifier that was trained with the data closest to the vicinity of the feature vector is given the highest credit.
 - One or more local classifiers can be nominated to make the decision.

- **Classifier Fusion**
 - Each classifier is trained over the entire feature space.
 - Classifier Combination involves merging the individual *weak* classifier design to obtain a single *strong* classifier.
Combination Rule [2] : Majority Voting

- **Majority Based Combiner**
 - **Unanimous voting**: All classifiers agree the class label
 - **Simple majority**: At least one or more than half of the classifiers agree the class label
 - **Majority voting**: Class label that receives the highest number of votes.

- **Weight-Based Combiner**
 - Collect votes from pool of classifiers for each training example
 - Decrease weight associated with each classifier that guessed wrong
 - Combiner predicts weighted majority label

- **How we do assign the weights?**
 - Based on Training Error
 - Using Validation set
 - Estimate of the classifier’s future performance

- **Other combination rules**
 - Behavior knowledge space, Borda count
 - Mean rule, Weighted average
Bagging [1]

- **Application of bootstrap sampling**
 - Given: set D containing m training examples
 - Create $S[i]$ by drawing m examples at random with replacement from D
 - $S[i]$ of size m expected to leave out 75%-100% of examples from D

- **Bagging**
 - Create k bootstrap samples $S[1], S[2], ..., S[k]$
 - Train distinct inducer on each $S[i]$ to produce k classifiers
 - Classify new instance by classifier vote (majority vote)

- **Variations**
 - **Random forests**
 - Can be created from decision trees, whose certain parameters vary randomly.
 - **Pasting small votes (for large datasets)**
 - RVotes: Creates the data sets randomly
 - IVotes: Creates the data sets based on the importance of instances, easy to hard!
Bagging [2]

Algorithm: Bagging

Input:
- Training data S with correct labels $\omega_i \in \Omega = \{\omega_1, \ldots, \omega_C\}$ representing C classes
- Weak learning algorithm **WeakLearn**
- Integer T specifying number of iterations.
- Percent (or fraction) F to create bootstrapped training data

Do $t = 1, \ldots, T$

1. Take a bootstrapped replica S_t by randomly drawing F percent of S.
2. Call **WeakLearn** with S_t and receive the hypothesis (classifier) h_t.
3. Add h_t to the ensemble, E.

Test: Simple Majority Voting – Given unlabeled instance x

1. Evaluate the ensemble $E = \{h_1, \ldots, h_T\}$ on x.

2. Let $v_{t,j} = \begin{cases}
1, & \text{if } h_t \text{ picks class } \omega_j \\
0, & \text{otherwise}
\end{cases}$ (8)

be the vote given to class ω_j by classifier h_t.

3. Obtain total vote received by each class

$$V_j = \sum_{t=1}^{T} v_{t,j}, \ j = 1, \ldots, C$$ (9)

4. Choose the class that receives the highest total vote as the final classification.
Bagging: Pasting small votes (IVotes)

Algorithm: Pasting Small Votes (IVotes)

Input:
1. Training data S with correct labels $\omega_i \in \Omega = \{\omega_1, \ldots, \omega_C\}$ representing C classes;
2. Weak learning algorithm **WeakLearn**;
3. Integer T specifying number of iterations;
4. *Bitesize* M, indicating the size of individual training subsets to be created.

Initialize

1. Choose a random subset S_0 of size M from S.
2. Call **WeakLearn** with S_0, and receive the hypothesis (classifier) h_0.
3. Evaluate h_0 on a validation dataset, and obtain error ε_0 of h_0.
4. If $\varepsilon_0 > \frac{1}{2}$, return to step 1.

Do $t=1, \ldots, T$

1. Randomly draw an instance x from S according to uniform distribution.
2. Evaluate x using majority vote of out-of-bag classifiers in the current ensemble E_t.
3. If x is misclassified, place x in S_t. Otherwise, place x in S_t with probability p

$$p = \frac{\varepsilon_{t-1}}{(1-\varepsilon_{t-1})}.$$ \hspace{1cm} (10)

Repeat Steps 1-3 until S_t has M such instances.

4. Call **WeakLearn** with S_t and receive the hypothesis h_t.
5. Evaluate h_t on a validation dataset, and obtain error ε_t of h_t. If $\varepsilon_t > \frac{1}{2}$, return to step 4.
6. Add h_t to the ensemble to obtain E_t.

End
Schapire proved that a weak learner, an algorithm that generates classifiers that can merely do better than random guessing, can be turned into a strong learner that generates a classifier that can correctly classify all but an arbitrarily small fraction of the instances.

- In boosting, the training data are ordered from easy to hard.
- Easy samples are classified first, and hard samples are classified later.

- Create the first classifier same as Bagging
- The second classifier is trained on training data only half of which is correctly classified by the first one and the other half is misclassified.
- The third one is trained with data that two first disagree.

- Variations
 - AdaBoost.M1
 - AdaBoost.R
Boosting

Algorithm: Boosting

Input:
- Training data S of size N with correct labels $\omega_i \in \Omega = \{\omega_1, \omega_2\}$;
- Weak learning algorithm `WeakLearn`.

Training

1. Select $N_1 < N$ patterns without replacement from S to create data subset S_1.
2. Call `WeakLearn` and train with S_1 to create classifier C_1.
3. Create dataset S_2 as the most informative dataset, given C_1, such that half of S_2 is correctly classified by C_2, and the other half is misclassified. To do so:
 a. Flip a fair coin. If Head, select samples from S, and present them to C_1 until the first instance is misclassified. Add this instance to S_2.
 b. If Tail, select samples from S, and present them to C_1 until the first one is correctly classified. Add this instance to S_2.
 c. Continue flipping coins until no more patterns can be added to S_2.
4. Train the second classifier C_2 with S_2.
5. Create S_3 by selecting those instances for which C_1 and C_2 disagree. Train the third classifier C_3 with S_3.

Test – Given a test instance x

1. Classify x by C_1 and C_2. If they agree on the class, this class is the final classification.
2. If they disagree, choose the class predicted by C_3 as the final classification.
Algorithm AdaBoost.M1
Input:
- Sequence of N examples $S = \{(x_i, y_i), i = 1, \ldots, N\}$ with labels $y_i \in \Omega, \Omega = \{\omega_1, \ldots, \omega_C\}$;
- Weak learning algorithm WeakLearn;
- Integer T specifying number of iterations.

Initialize $D_1(i) = \frac{1}{N}, i = 1, \ldots, N$ \hspace{1cm} (11)

Do for $t = 1, 2, \ldots, T$:
1. Select a training data subset S_t, drawn from the distribution D_t.
2. Train WeakLearn with S_t, receive hypothesis h_t.
3. Calculate the error of h_t: $\varepsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i)$. \hspace{1cm} (12)
 If $\varepsilon_t > \frac{1}{2}$, abort.
4. Set $\beta_t = \varepsilon_t / (1 - \varepsilon_t)$. \hspace{1cm} (13)
5. Update distribution
 $$D_t: D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t, & \text{if } h_t(x_i) = y_i \\ 1, & \text{otherwise} \end{cases}$$ \hspace{1cm} (14)
 where $Z_t = \sum_i D_t(i)$ is a normalization constant chosen so that D_{t+1} becomes a proper distribution function.

Test – Weighted Majority Voting: Given an unlabeled instance x,
1. Obtain total vote received by each class
 $$V_j = \sum_{i: h_t(x_i) = \omega_j} \log \frac{1}{\beta_t}, \hspace{0.5cm} j = 1, \ldots, C.$$ \hspace{1cm} (15)
2. Choose the class that receives the highest total vote as the final classification.
Stacked Generalization (Stacking)

Intuitive Idea

- Train multiple learners
 - Each uses subsample of D
 - May be ANN, decision tree, etc.
- Train combiner on validation segment
Mixture Models

Intuitive Idea

- Train multiple learners
 - Each uses subsample of D
 - May be ANN, decision tree, etc.
- Gating Network usually is NN

![Diagram of Mixture Model]

Machine Learning
Cascading

Use \(d_j \) only if preceding ones are not confident

Cascade learners in order of complexity
T. G. Dietterich, “Machine Learning Research: four current directions”, Department of computer science, Oregon State University

T. G. Dietterich, “Ensemble Methods in Machine Learning”, Department of computer science, Oregon State University

Ron Meir, Gunnar Ratsch, “An introduction to Boosting and Leveraging”, Australian National University
