Performance Evaluation of Computer Systems

Dr. Ali Movaghar

Fall 2014
3- PROBABILITY REVIEW
Probability Space

• \((\Omega, \Sigma, p)\)
• An event \(E \in \Sigma\) is any subset of the sample space, \(\Omega\)
• \(|\Sigma| = 2^{|\Omega|}\)
• \(p: \Sigma \rightarrow [0, 1]\)
Probability Space

• E_1 and E_2 are mutually exclusive
 – $E_1 \cap E_2 = \emptyset$

• E_1, E_2, \ldots, E_n are events such that
 – $\forall i, j \ E_i \cap E_j = \emptyset$
 – $\bigcup_{i=1}^{n} E_i = F$
 => Events E_1, E_2, \ldots, E_n partition set F.
Conditional Probability & Independent Events

- Conditional probability of event E given event F:
 - $P\{E|F\}$
 - $P\{E|F\} = \frac{P\{E \cap F\}}{P\{F\}}$

- Events E and F are independent if:
 - $P\{E \cap F\} = P\{E\} \times P\{F\}$
 - $P\{E|F\} = \frac{P\{E \cap F\}}{P\{F\}} = P\{E\}$

- Events E and F are conditionally independent given event G, where $P\{G\} > 0$, if:
 - $P\{E \cap F|G\} = P\{E|G\} \times P\{F|G\}$
Law of Total Probability

- Let F_1, \ldots, F_n partition the state space Ω. Then,

$$- P\{E\} = \sum_{i=1}^{n} P\{E \cap F_i\}$$

$$= \sum_{i=1}^{n} P\{E|F_i\} \times P\{F_i\}$$
Bayes Law

- \(P\{F|E\} = \frac{P\{E \cap F\}}{P\{E\}} = \frac{P\{E|F\} \cdot P\{F\}}{P\{E\}} \)

- **Extended Bayes Law**

 - Let \(F, F_2, \ldots, F_n \) partition the state space \(\Omega \). Then,

 \[
 P\{F|E\} = \frac{P\{E \cap F\}}{P\{E\}} = \frac{P\{E|F\} \cdot P\{F\}}{P\{E\}} = \frac{P\{E|F\} \cdot P\{F\}}{\sum_{i=1}^{n} P\{E|F_i\} \times P\{F_i\}}
 \]
Random Variable

• $X : \Omega \rightarrow R$
 – Real-valued function of the outcome of an experiment
 – All the theorems that we learned about events apply to random variables as well
 – e.g. Total probability
Probabilities and Densities: Discrete

- **Probability mass function (p.m.f.)**

 - $P_X(a) = P\{X = a\}$, where $\sum_x P_X(a) = 1$

- **Cumulative distribution function**

 - $F_X(a) = P\{X \leq a\} = \sum_{x \leq a} P_X(x)$

 - $\overline{F_X}(a) = P\{X > a\} = \sum_{x > a} P_X(x) = 1 - F_X(a)$

- **Samples**

 - Bernoulli (p)

 - Binomial (n, p)

 - Geometric (p)

 - Poisson (λ)
Probabilities and Densities: Continuous

- **Probability density function (p.d.f.)**
 - \(P(a \leq X \leq b) = \int_a^b f_X(x)dx \), and where \(\int_{-\infty}^{\infty} f_X(x)dx = 1 \)
 - \(f_X(x) \neq P\{X = x\} \)
 - \(f_X(x)dx = P\{x \leq X \leq x + dx\} \)

- **Cumulative distribution function**
 - \(F_X(a) = P\{-\infty \leq X \leq a\} = \int_{-\infty}^{a} f_X(x)dx \)
 - \(F_X(a) = P\{X > a\} = 1 - F_X(a) \)
 - \(f_X(x) = \frac{d}{dx} \int_{-\infty}^{x} f(t)dt = \frac{d}{dx} F_X(x) \)

- **Samples**
 - Uniform \((a, b)\)
 - Exp \((\lambda)\)
 - Pareto \((\alpha)\)
Expectation and Variance

• Discrete random variable : X
 - $E[X] = \sum_x x \cdot p_X(x)$
 - $E[X^i] = \sum_x x^i \cdot p_X(x)$

• Continuous random variable : X
 - $E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$
 - $E[X^i] = \int_{-\infty}^{\infty} x^i \cdot f_X(x) dx$
Expectation of a Function

• Discrete random variable: \(X \)
 \[E[g(X)] = \sum_x g(x) \cdot p_X(x) \]

• Continuous random variable: \(X \)
 \[E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx \]
Variance

• Expected squared difference of X from its mean

$$- Var(X) = E[(X - E[X])^2]$$
$$- Var(X) = E[X^2] - (E(X))^2$$
<table>
<thead>
<tr>
<th>Distribution</th>
<th>p.m.f. $p_X(x)$</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli(p)</td>
<td>$p_X(0) = 1 - p$; $p_X(1) = p$</td>
<td>p</td>
<td>$p(1 - p)$</td>
</tr>
<tr>
<td>Binomial(n, p)</td>
<td>$p_X(x) = \binom{n}{x}p^x (1-p)^{n-x}$, $x = 0, 1, \ldots, n$</td>
<td>np</td>
<td>$np(1 - p)$</td>
</tr>
<tr>
<td>Geometric(p)</td>
<td>$p_X(x) = (1 - p)^{x-1}p$, $x = 1, 2, \ldots$</td>
<td>$\frac{1}{p}$</td>
<td>$\frac{1-p}{p^2}$</td>
</tr>
<tr>
<td>Poisson(λ)</td>
<td>$p_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$, $x = 0, 1, 2, \ldots$</td>
<td>λ</td>
<td>λ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
<th>p.d.f. $f_X(x)$</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp(λ)</td>
<td>$f_X(x) = \lambda e^{-\lambda x}$</td>
<td>$\frac{1}{\lambda}$</td>
<td>$\frac{1}{\lambda^2}$</td>
</tr>
<tr>
<td>Uniform(a, b)</td>
<td>$f_X(x) = \frac{1}{b-a}$, if $a \leq x \leq b$</td>
<td>$\frac{b+a}{2}$</td>
<td>$\frac{(b-a)^2}{12}$</td>
</tr>
<tr>
<td>Pareto(α), $0 < \alpha < 2$</td>
<td>$f_X(x) = \alpha x^{-\alpha - 1}$, if $x > 1$</td>
<td>$\begin{cases} \infty & \text{if } \alpha \leq 1 \ \frac{\alpha}{\alpha - 1} & \text{if } \alpha > 1 \end{cases}$</td>
<td>∞</td>
</tr>
<tr>
<td>Normal(μ, σ^2)</td>
<td>$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}$, $-\infty < x < \infty$</td>
<td>μ</td>
<td>σ^2</td>
</tr>
</tbody>
</table>
Joint Probabilities and Independence

• Discrete random variables X and Y

• Joint probability mass function

 $\begin{align*}
 & - p_{X,Y}(x, y) = P\{X = x \& Y = y\} \\
 & - p_X(x) = \sum_y p_{X,Y}(x, y) \\
 & - p_Y(y) = \sum_x p_{X,Y}(x, y)
 \end{align*}$

• X and Y are independent

 $\begin{align*}
 & - X \perp Y \\
 & - p_{X,Y}(x, y) = p_X(x) \cdot p_Y(y)
 \end{align*}$
Joint Probabilities and Independence

- Contenous random variables X and Y
- Joint probability density function
 \[- \int_c^d \int_a^b f_{X,Y} (x, y) = P\{a < X < b \& c < Y < d\} \]
 \[- f_X (x) = \int_{-\infty}^{\infty} f_{X,Y} (x, y) dy \]
 \[- f_Y (y) = \int_{-\infty}^{\infty} f_{X,Y} (x, y) dx \]
- X and Y are independent
 \[- X \perp Y \]
 \[- f_{X,Y} (x, y) = f_x(x).f_y(y), \forall x, y \]
Theorem 3.20

If $X \perp Y$, then $E[XY] = E[X] \cdot E[Y]$.

Proof

$$E[XY] = \sum_x \sum_y xy \cdot P\{X = x, Y = y\}$$

$$= \sum_x \sum_y xy \cdot P\{X = x\} P\{Y = y\} \quad \text{(by definition of } \perp)$$

$$= \sum_x x P\{X = x\} \cdot \sum_y y P\{Y = y\}$$

$$= E[X] E[Y]$$

The same argument works for continuous r.v.’s.

• We also have,

$$E[g(X)f(Y)] = E[g(X)] \times E[f(Y)]$$
Question?

• $E[XY] = E[X]E[Y]$? $\Rightarrow X \perp Y$

• No, see Exercise 3.10
Conditional Probabilities: Discrete

- Conditional probability mass function of X given event A

$$p_{X \mid A}(x) = P\{X = x \mid A\} = \frac{P\{(X=x) \cap A\}}{P\{A\}}$$

- Conditional expectation of X given event A

$$E(X \mid A) = \sum_x x \cdot p_{X \mid A}(x) = \sum_x x \cdot \frac{P\{(X=x) \cap A\}}{P\{A\}}$$
Conditional Probabilities : Continuous

• Conditional *p. d. f.* of X given event A

 $$f_{X|A}(x) = \begin{cases} \frac{f_X(x)}{P\{X \in A\}}, & \text{if } x \in A \\ 0, & \text{otherwise} \end{cases}$$

• Conditional expectation of X given event A

 $$E(X|A) = \int_{-\infty}^{\infty} xf_{X|A}(x)\,dx$$

 $$= \int_{A} xf_{X|A}(x)\,dx = \frac{1}{P\{X \in A\}} \int_{A} xf_{X}(x)\,dx$$
Probabilities and Expectations via Conditioning

- Let F, F_2, \ldots, F_n partition the state space Ω
 \[
 P\{E\} = \sum_{i=1}^{n} P\{E | F_i\} P\{F_i\}
 \]

- Law of Total Probability for Discrete Random Variables
 \[
 P\{X = k\} = \sum_y P\{X = k | Y = y\} . P\{Y = y\}
 \]

Theorem 3.25 For discrete random variables,

\[
E[X] = \sum_y E[X | Y = y] P\{Y = y\}.
\]

Similarly for continuous random variables,

\[
E[X] = \int E[X | Y = y] f_Y(y) dy.
\]

- $E[g(X)] = \sum_y E[g(X)|Y = y]. P\{Y = y\}$
Theorem 3.26 (Linearity of Expectation) For random variables X and Y,

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

Proof Here is a proof in the case where X and Y are continuous. The discrete case is similar: Just replace $f_{X,Y}(x, y)$ with $p_{X,Y}(x, y)$.

$$\begin{align*}
\mathbb{E}[X + Y] &= \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} (x + y) f_{X,Y}(x, y) \, dx \, dy \\
&= \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} x f_{X,Y}(x, y) \, dx \, dy + \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} y f_{X,Y}(x, y) \, dx \, dy \\
&= \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} x f_{X,Y}(x, y) \, dy \, dx + \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} y f_{X,Y}(x, y) \, dx \, dy \\
&= \int_{x=-\infty}^{\infty} x \int_{y=-\infty}^{\infty} f_{X,Y}(x, y) \, dy \, dx + \int_{y=-\infty}^{\infty} y \int_{x=-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy \\
&= \int_{x=-\infty}^{\infty} x f_X(x) \, dx + \int_{y=-\infty}^{\infty} y f_Y(y) \, dy \\
&= \mathbb{E}[X] + \mathbb{E}[Y]
\end{align*}$$
Linearity of Expectation

Theorem 3.27 Let X and Y be random variables where $X \perp Y$. Then
\[
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y).
\]

Proof
\[
\begin{align*}
\text{Var}(X + Y) &= \mathbb{E}[(X + Y)^2] - (\mathbb{E}[(X + Y)])^2 \\
&= \mathbb{E}[X^2] + \mathbb{E}[Y^2] + 2\mathbb{E}[XY] \\
&\quad - (\mathbb{E}[X])^2 - (\mathbb{E}[Y])^2 - 2\mathbb{E}[X] \mathbb{E}[Y] \\
&= \text{Var}(X) + \text{Var}(Y) \\
&\quad + 2\mathbb{E}[XY] - 2\mathbb{E}[X] \mathbb{E}[Y] \\
&\quad \text{equals 0 if } X \perp Y
\end{align*}
\]
Normal Distribution

Definition 3.28 A continuous r.v. X is said to be *Normal*(μ, σ^2) or *Gaussian*(μ, σ^2) if it has p.d.f. $f_X(x)$ of the form

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}, \quad -\infty < x < \infty$$

where $\sigma > 0$. The parameter μ is called the *mean*, and the parameter σ is called the *standard deviation*.

Definition 3.29 A Normal($0, 1$) r.v. Y is said to be a *standard Normal*. Its c.d.f. is denoted by

$$\Phi(y) = F_Y(y) = P\{ Y \leq y \} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} \, dt.$$

Theorem 3.30 Let $X \sim \text{Normal}(\mu, \sigma^2)$, then $E[X] = \mu$ and $\text{Var}(X) = \sigma^2$.
Linear Transformation Property

Theorem 3.31 (Linear Transformation Property) Let $X \sim \text{Normal}(\mu, \sigma^2)$. Let $Y = aX + b$, where $a > 0$ and b are scalars. Then $Y \sim \text{Normal}(a\mu + b, a^2\sigma^2)$.

- Thus,
- $X \sim \text{Normal}(\mu, \sigma^2) \iff Y = \frac{X-\mu}{\sigma} \sim \text{Normal}(0, 1)$
- $P\{X < K\} = P\left\{\frac{X-\mu}{\sigma} < \frac{k-\mu}{\sigma}\right\} = P\{Y < \frac{k-\mu}{\sigma}\} = \Phi\left(\frac{k-\mu}{\sigma}\right)$
Theorem 3.32 If $X \sim \text{Normal}(\mu, \sigma^2)$, then the probability that X deviates from its mean by less than k standard deviations is the same as the probability that the standard Normal deviates from its mean by less than k.

Proof Let $Y \sim \text{Normal}(0, 1)$. Then,

$$
P \left\{ -k\sigma < X - \mu < k\sigma \right\} = P \left\{ -k < \frac{X - \mu}{\sigma} < k \right\} = P \left\{ -k < Y < k \right\} \quad \blacksquare$$

Theorem 3.32 illustrates why it is often easier to think in terms of standard deviations than in absolute values.
Central Limit Theorem

Theorem 3.33 (Central Limit Theorem (CLT)) Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. r.v.’s with common mean μ and variance σ^2, and define

$$Z_n = \frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}}.$$

Then the c.d.f. of Z_n converges to the standard normal c.d.f.; that is,

$$\lim_{n \to \infty} P\{Z_n \leq z\} = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx$$

for every z.

- **Binomial**(n, p) distribution, which is a sum of i.i.d. **Bernoulli**(p) r.v.’s, converges to a Normal distribution when n is high.
- **Poisson**(λ) distribution is also well approximated by a **Normal** distribution with mean λ and variance λ.
Sum of a Random Number of Random Variables

• Number of these variables is itself a random variable
• N: non-negative integer-valued random variable

• $S = \sum_{i=1}^{N} X_i, N \perp X_i$

• $E[S], E[S^2], \ldots$?
 – Linearity equations only apply when N is a constant
 – ?
\[E[S] \]

- Condition on the value of \(N \), and then apply linearity of expectation

\[
E[S] = E\left[\sum_{i=1}^{N} X_i \right] = \sum_{n} E\left[\sum_{i=1}^{N} X_i \mid N = n \right] \cdot P\{N = n\}
\]

\[
= \sum_{n} E\left[\sum_{i=1}^{n} X_i \right] \cdot P\{N = n\}
\]

\[
= \sum_{n} nE[X] \cdot P\{N = n\}
\]

\[= E[X] \cdot E[N] \]
$E[S^2]$
Theorem 3.34 Let X_1, X_2, X_3, \ldots be i.i.d. random variables. Let

$$s = \sum_{i=1}^{N} X_i, \quad N \perp X_i.$$

Then

$$\mathbb{E}[s] = \mathbb{E}[N] \mathbb{E}[X],$$
$$\mathbb{E}[s^2] = \mathbb{E}[N] \text{Var}(X) + \mathbb{E}[N^2] (\mathbb{E}[X])^2,$$
$$\text{Var}(s) = \mathbb{E}[N] \text{Var}(X) + \text{Var}(N) (\mathbb{E}[X])^2.$$