Chapter 6
Queueing Models

Banks, Carson, Nelson & Nicol
Discrete-Event System Simulation
Purpose

- Simulation is often used in the analysis of queueing models.
- A simple but typical queueing model:

Queueing models provide the analyst with a powerful tool for designing and evaluating the performance of queueing systems.

Typical measures of system performance:
- Server utilization, length of waiting lines, and delays of customers
- For relatively simple systems, compute mathematically
- For realistic models of complex systems, simulation is usually required.
Outline

- Discuss some well-known models:
 - General characteristics of queues,
 - Meanings and relationships of important performance measures,
 - Estimation of mean measures of performance.
 - Effect of varying input parameters,
 - Mathematical solution of some basic queueing models.
Characteristics of Queueing Systems

Key elements of queueing systems:

- Customer: refers to anything that arrives at a facility and requires service, e.g., people, machines, trucks, emails.
- Server: refers to any resource that provides the requested service, e.g., repairpersons, retrieval machines, runways at airport.
Calling Population

[Characteristics of Queueing System]

- Calling population: the population of potential customers, may be assumed to be finite or infinite.
 - Finite population model: if arrival rate depends on the number of customers being served and waiting, e.g., model of one corporate jet, if it is being repaired, the repair arrival rate becomes zero.
 - Infinite population model: if arrival rate is not affected by the number of customers being served and waiting, e.g., systems with large population of potential customers.
System Capacity

- System Capacity: a limit on the number of customers that may be in the waiting line or system.
 - **Limited capacity**, e.g., an automatic car wash only has room for 10 cars to wait in line to enter the mechanism.
 - **Unlimited capacity**, e.g., concert ticket sales with no limit on the number of people allowed to wait to purchase tickets.
Arrival Process

For infinite-population models:

- In terms of interarrival times of successive customers.
- **Random arrivals**: interarrival times usually characterized by a probability distribution.
 - Most important model: Poisson arrival process (with rate λ), where A_n represents the interarrival time between customer $n-1$ and customer n, and is exponentially distributed (with mean $1/\lambda$).
- **Scheduled arrivals**: interarrival times can be constant or constant plus or minus a small random amount to represent early or late arrivals.
 - e.g., patients to a physician or scheduled airline flight arrivals to an airport.
- At least one customer is assumed to always be present, so the server is never idle, e.g., sufficient raw material for a machine.
Arrival Process

[Characteristics of Queueing System]

- For finite-population models:
 - Customer is **pending** when the customer is outside the queueing system, e.g., machine-repair problem: a machine is “pending” when it is operating, it becomes “not pending” the instant it demands service from the repairman.
 - Runtime of a customer is the length of time from departure from the queueing system until that customer’s next arrival to the queue, e.g., machine-repair problem, machines are customers and a runtime is time to failure.
 - Let $A_1^{(i)}$, $A_2^{(i)}$, … be the successive runtimes of customer i, and $S_1^{(i)}$, $S_2^{(i)}$ be the corresponding successive system times:
Queue Behavior and Queue Discipline

[Characteristics of Queueing System]

- **Queue behavior**: the actions of customers while in a queue waiting for service to begin, for example:
 - **Balk**: leave when they see that the line is too long,
 - **Renege**: leave after being in the line when it’s moving too slowly,
 - **Jockey**: move from one line to a shorter line.

- **Queue discipline**: the logical ordering of customers in a queue that determines which customer is chosen for service when a server becomes free, for example:
 - First-in-first-out (FIFO)
 - Last-in-first-out (LIFO)
 - Service in random order (SIRO)
 - Shortest processing time first (SPT)
 - Service according to priority (PR).
Service Times and Service Mechanism

[Characteristics of Queueing System]

- **Service times** of successive arrivals are denoted by S_1, S_2, S_3.
 - May be constant or random.
 - $\{S_1, S_2, S_3, \ldots\}$ is usually characterized as a sequence of independent and identically distributed random variables, e.g., exponential, Weibull, gamma, lognormal, and truncated normal distribution.

- A queueing system consists of a number of service centers and interconnected queues.
 - Each service center consists of some number of servers, c, working in parallel, upon getting to the head of the line, a customer takes the 1^{st} available server.
Example: consider a discount warehouse where customers may:

- Serve themselves before paying at the cashier:
Service Times and Service Mechanism

[Characteristics of Queueing System]

- Wait for one of the three clerks:
Batch service (a server serving several customers simultaneously), or customer requires several servers simultaneously.
Queueing Notation

A notation system for parallel server queues: $A/B/c/N/K$

- A represents the interarrival-time distribution,
- B represents the service-time distribution,
- c represents the number of parallel servers,
- N represents the system capacity,
- K represents the size of the calling population.
Queueing Notation

[Characteristics of Queueing System]

Primary performance measures of queueing systems:

- P_n: steady-state probability of having n customers in system,
- $P_n(t)$: probability of n customers in system at time t,
- λ: arrival rate,
- λ_e: effective arrival rate,
- μ: service rate of one server,
- ρ: server utilization,
- A_n: interarrival time between customers $n-1$ and n,
- S_n: service time of the nth arriving customer,
- W_n: total time spent in system by the nth arriving customer,
- W_n^Q: total time spent in the waiting line by customer n,
- $L(t)$: the number of customers in system at time t,
- $L_Q(t)$: the number of customers in queue at time t,
- L: long-run time-average number of customers in system,
- L_Q: long-run time-average number of customers in queue,
- w: long-run average time spent in system per customer,
- w_Q: long-run average time spent in queue per customer.
Time-Average Number in System \(L \)

[Characteristics of Queueing System]

Consider a queueing system over a period of time \(T \),

- Let \(T_i \) denote the total time during \([0, T]\) in which the system contained exactly \(i \) customers, the time-weighted-average number in a system is defined by:

\[
\hat{L} = \frac{1}{T} \sum_{i=0}^{\infty} iT_i = \sum_{i=0}^{\infty} i \left(\frac{T_i}{T} \right)
\]

- Consider the total area under the function is \(L(t) \), then,

\[
\hat{L} = \frac{1}{T} \sum_{i=0}^{\infty} iT_i = \frac{1}{T} \int_0^T L(t) dt
\]

- The long-run time-average # in system, with probability 1:

\[
\hat{L} = \frac{1}{T} \int_0^T L(t) dt \rightarrow L \quad \text{as} \quad T \rightarrow \infty
\]
The time-weighted-average number in queue is:

\[\hat{L}_Q = \frac{1}{T} \sum_{i=0}^{\infty} iT_i^Q = \frac{1}{T} \int_0^T L_Q(t)dt \rightarrow L_Q \quad \text{as} \quad T \rightarrow \infty \]

\(G/G/1/N/K \) example: consider the results from the queueing system.

\[L_Q(t) = \begin{cases}
0, & \text{if } L(t) = 0 \\
L(t) - 1, & \text{if } L(t) \geq 1
\end{cases} \]

\[\hat{L} = [0(3) + 1(12) + 2(4) + 3(1)] / 20 = 23 / 20 = 1.15 \text{ customers} \]

\[\hat{L}_Q = \frac{0(15) + 1(4) + 2(1)}{20} = 0.3 \text{ customers} \]
Average Time Spent in System Per Customer w [Characteristics of Queueing System]

- The average time spent in system per customer, called the average system time, is:
 \[
 \hat{w} = \frac{1}{N} \sum_{i=1}^{N} W_i
 \]
 where W_1, W_2, \ldots, W_N are the individual times that each of the N customers spend in the system during $[0, T]$.

- For stable systems: $\hat{w} \rightarrow w$ as $N \rightarrow \infty$

- If the system under consideration is the queue alone:
 \[
 \hat{w}_Q = \frac{1}{N} \sum_{i=1}^{N} W_i^Q \rightarrow w_Q \quad \text{as} \quad N \rightarrow \infty
 \]

- $G/G/1/N/K$ example (cont.): the average system time is
 \[
 \hat{w} = \frac{W_1 + W_2 + \ldots + W_5}{5} = \frac{2 + (8 - 3) + \ldots + (20 - 16)}{5} = 4.6 \text{ time units}
 \]
The Conservation Equation

[Characteristics of Queueing System]

- Conservation equation (a.k.a. Little’s law)

\[
\hat{L} = \hat{\lambda} \hat{w}
\]

\[
L = \lambda w \quad \text{as} \quad T \to \infty \quad \text{and} \quad N \to \infty
\]

- Holds for almost all queueing systems or subsystems (regardless of the number of servers, the queue discipline, or other special circumstances).

- \(G/G/1/N/K\) example (cont.): On average, one arrival every 4 time units and each arrival spends 4.6 time units in the system. Hence, at an arbitrary point in time, there is \((1/4)(4.6) = 1.15\) customers present on average.
Server Utilization

[Characteristics of Queueing System]

- Definition: **the proportion of time that a server is busy.**
 - Observed server utilization, $\hat{\rho}$, is defined over a specified time interval $[0,T]$.
 - Long-run server utilization is ρ.
 - For systems with long-run stability: $\hat{\rho} \rightarrow \rho$ as $T \rightarrow \infty$
Server Utilization

[Characteristics of Queueing System]

- For $G/G/1/\infty/\infty$ queues:

- In general, for a single-server queue:

\[
\rho = \frac{\lambda E(s)}{\mu} = \frac{\lambda}{\mu} < 1
\]

- For a single-server stable queue:

- For an unstable queue ($\lambda > \mu$), long-run server utilization is 1.
Server Utilization

For $G/G/c/\infty/\infty$ queues:

- A system with c identical servers in parallel.
- If an arriving customer finds more than one server idle, the customer chooses a server without favoring any particular server.
- The long-run average server utilization is:

\[
\rho = \frac{\lambda}{c \mu}, \quad \text{where } \lambda < c \mu \text{ for stable systems}
\]
Server Utilization and System Performance
[Characteristics of Queueing System]

- System performance varies widely for a given utilization ρ.
 - For example, a $D/D/1$ queue where $E(A) = 1/\lambda$ and $E(S) = 1/\mu$, where:
 $$L = \rho = \frac{\lambda}{\mu}, \quad w = E(S) = \frac{1}{\mu}, \quad L_Q = W_Q = 0.$$
 - By varying λ and μ, server utilization can assume any value between 0 and 1.
 - Yet there is never any line.
- In general, variability of interarrival and service times causes lines to fluctuate in length.
Server Utilization and System Performance

[Characteristics of Queueing System]

- Example: A physician who schedules patients every 10 minutes and spends S_i minutes with the i^{th} patient:

 $$S_i = \begin{cases}
 9 	ext{ minutes with probability } 0.9 \\
 12 	ext{ minutes with probability } 0.1
\end{cases}$$

- Arrivals are deterministic, $A_1 = A_2 = \ldots = \lambda^{-1} = 10$.
- Services are stochastic, $E(S_i) = 9.3 \text{ min}$ and $V(S_i) = 0.81 \text{ min}^2$.
- On average, the physician's utilization $= \rho = \lambda/\mu = 0.93 < 1$.
- Consider the system is simulated with service times: $S_1 = 9$, $S_2 = 12$, $S_3 = 9$, $S_4 = 9$, $S_5 = 9$, The system becomes:

 - The occurrence of a relatively long service time ($S_2 = 12$) causes a waiting line to form temporarily.
Costs in Queueing Problems

[Characteristics of Queueing System]

- Costs can be associated with various aspects of the waiting line or servers:
 - System incurs a cost for each customer in the queue, say at a rate of $10 per hour per customer.
 - The average cost per customer is:
 \[\sum_{j=1}^{N} \frac{10 \times W_j^Q}{N} = 10 \times \hat{W}_Q \]
 - If \(\hat{\lambda} \) customers per hour arrive (on average), the average cost per hour is:
 \[\left(\frac{\hat{\lambda}}{\text{customer}} \right) \left(\frac{10 \times \hat{W}_Q}{\text{customer}} \right) = 10 \times \hat{\lambda} \hat{W}_Q = 10 \times \hat{L}_Q / \text{hour} \]
 - Server may also impose costs on the system, if a group of \(c \) parallel servers (\(1 \leq c \leq \infty \)) have utilization \(\rho \), each server imposes a cost of $5 per hour while busy.
 - The total server cost is: \(5 \times c \rho \).
Steady-State Behavior of Infinite-Population Markovian Models

- Markovian models: exponential-distribution arrival process (mean arrival rate = λ).
- Service times may be exponentially distributed as well (M) or arbitrary (G).
- A queueing system is in statistical equilibrium if the probability that the system is in a given state is not time dependent:
 \[P(L(t) = n) = P_n(t) = P_n. \]
- Mathematical models in this chapter can be used to obtain approximate results even when the model assumptions do not strictly hold (as a rough guide).
- Simulation can be used for more refined analysis (more faithful representation for complex systems).
Steady-State Behavior of Infinite-Population Markovian Models

For the simple model studied in this chapter, the steady-state parameter, L, the time-average number of customers in the system is:

$$L = \sum_{n=0}^{\infty} nP_n$$

- Apply Little’s equation to the whole system and to the queue alone:

$$w = \frac{L}{\lambda}, \quad w_Q = w - \frac{1}{\mu}$$

$$L_Q = \lambda w_Q$$

- $G/G/c/\infty/\infty$ example: to have a statistical equilibrium, a necessary and sufficient condition is $\lambda/(c\mu) < 1$.
M/G/1 Queues

- Single-server queues with **Poisson arrivals & unlimited capacity**.
- Suppose service times have mean \(1/\mu\) and variance \(\sigma^2\) and \(\rho = \lambda/\mu < 1\), the steady-state parameters of \(M/G/1\) queue:

\[
\begin{align*}
\rho &= \lambda / \mu, \quad P_0 = 1 - \rho \\
L &= \rho + \frac{\rho^2 (1 + \sigma^2 \mu^2)}{2(1 - \rho)}, \quad L_Q = \frac{\rho^2 (1 + \sigma^2 \mu^2)}{2(1 - \rho)} \\
w &= \frac{1}{\mu} + \frac{\lambda (1/\mu^2 + \sigma^2)}{2(1 - \rho)}, \quad w_Q = \frac{\lambda (1/\mu^2 + \sigma^2)}{2(1 - \rho)}
\end{align*}
\]
M/G/1 Queues

No simple expression for the steady-state probabilities P_1, P_2, \ldots

Average length of queue, L_Q, can be rewritten as:

$$L_Q = \frac{\rho^2}{2(1-\rho)} + \frac{\lambda^2 \sigma^2}{2(1-\rho)}$$

- If λ and μ are held constant, L_Q depends on the variability, σ^2, of the service times.
Example: Two workers competing for a job, Able claims to be faster than Baker on average, but Baker claims to be more consistent,

- Poisson arrivals at rate $\lambda = 2$ per hour ($1/30$ per minute).
- Able: $1/\mu = 24$ minutes and $\sigma^2 = 20^2 = 400$ minutes2:

$$L_Q = \frac{(1/30)^2[24^2 + 400]}{2(1 - 4/5)} = 2.711 \text{ customers}$$

- The proportion of arrivals who find Able idle and thus experience no delay is $P_0 = 1 - \rho = 1/5 = 20\%$.
- Baker: $1/\mu = 25$ minutes and $\sigma^2 = 2^2 = 4$ minutes2:

$$L_Q = \frac{(1/30)^2[25^2 + 4]}{2(1 - 5/6)} = 2.097 \text{ customers}$$

- The proportion of arrivals who find Baker idle and thus experience no delay is $P_0 = 1 - \rho = 1/6 = 16.7\%$.
- Although working faster on average, Able’s greater service variability results in an average queue length about 30\% greater than Baker’s.
M/M/1 Queues

Suppose the service times in an $M/G/1$ queue are exponentially distributed with mean $1/\mu$, then the variance is $\sigma^2 = 1/\mu^2$.

- $M/M/1$ queue is a useful approximate model when service times have standard deviation approximately equal to their means.

- The steady-state parameters:

$$\rho = \lambda / \mu, \quad P_n = (1 - \rho)\rho^n$$

$$L = \frac{\lambda}{\mu - \lambda} = \frac{\rho}{1 - \rho}, \quad L_Q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{\rho^2}{1 - \rho}$$

$$w = \frac{1}{\mu - \lambda} = \frac{1}{\mu(1 - \rho)}, \quad w_Q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{\rho}{\mu(1 - \rho)}$$
M/M/1 Queues

Example: M/M/1 queue with service rate $\mu=10$ customers per hour.

- Consider how L and w increase as arrival rate, λ, increases from 5 to 8.64 by increments of 20%:

<table>
<thead>
<tr>
<th>λ</th>
<th>5.0</th>
<th>6.0</th>
<th>7.2</th>
<th>8.64</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.500</td>
<td>0.600</td>
<td>0.720</td>
<td>0.864</td>
<td>1.000</td>
</tr>
<tr>
<td>L</td>
<td>1.00</td>
<td>1.50</td>
<td>2.57</td>
<td>6.35</td>
<td>∞</td>
</tr>
<tr>
<td>w</td>
<td>0.20</td>
<td>0.25</td>
<td>0.36</td>
<td>0.73</td>
<td>∞</td>
</tr>
</tbody>
</table>

- If $\lambda/\mu \geq 1$, waiting lines tend to continually grow in length.
- Increase in average system time (w) and average number in system (L) is highly nonlinear as a function of ρ.
Effect of Utilization and Service Variability

[Steady-State of Markovian Model]

- For almost all queues, if lines are too long, they can be reduced by decreasing server utilization (ρ) or by decreasing the service time variability (σ^2).
- A measure of the variability of a distribution, coefficient of variation (cv):

$$ (cv)^2 = \frac{V(X)}{[E(X)]^2} $$

- The larger cv is, the more variable is the distribution relative to its expected value
Effect of Utilization and Service Variability

[Steady-State of Markovian Model]

Consider L_Q for any $M/G/1$ queue:

$$L_Q = \frac{\rho^2 (1 + \sigma^2 \mu^2)}{2(1 - \rho)}$$

$$= \left(\frac{\rho^2}{1 - \rho}\right) \left(1 + (cv)^2\right)$$

Corrects the $M/M/1$ formula to account for a non-exponential service time dist’n

L_Q for $M/M/1$ queue
Multiserver Queue [Steady-State of Markovian Model]

- \(M/M/c/\infty/\infty \) queue: \(c \) channels operating in parallel.
 - Each channel has an independent and identical exponential service-time distribution, with mean \(1/\mu \).
 - To achieve statistical equilibrium, the offered load (\(\lambda/\mu \)) must satisfy \(\lambda/\mu < c \), where \(\lambda/(c\mu) = \rho \) is the server utilization.
 - Some of the steady-state probabilities:
 \[
 \rho = \frac{\lambda}{c\mu}
 \]
 \[
 P_0 = \left\{ \sum_{n=0}^{c-1} \frac{(\lambda/\mu)^n}{n!} \right\} + \left[\frac{\lambda}{\mu} \right]^c \left(\frac{1}{c!} \right) \left(\frac{c\mu}{c\mu - \lambda} \right)^c \left(\frac{1}{c\mu - \lambda} \right)
 \]
 \[
 L = c\rho + \frac{(c\rho)^{c+1} P_0}{c(c!)(1 - \rho)^2} = c\rho + \frac{\rho P(L(\infty) \geq c)}{1 - \rho}
 \]
 \[
 w = \frac{L}{\lambda}
 \]
Multiserver Queue [Steady-State of Markovian Model]

Other common multiserver queueing models:

- $M/G/c/\infty$: general service times and c parallel server. The parameters can be approximated from those of the $M/M/c/\infty/\infty$ model.

- $M/G/\infty$: general service times and infinite number of servers, e.g., customer is its own system, service capacity far exceeds service demand.

- $M/M/C/N/\infty$: service times are exponentially distributed at rate m and c servers where the total system capacity is $N \geq c$ customer (when an arrival occurs and the system is full, that arrival is turned away).
Steady-State Behavior of Finite-Population Models

- When the calling population is small, the presence of one or more customers in the system has a strong effect on the distribution of future arrivals.

- Consider a finite-calling population model with K customers ($M/M/c/K/K$):
 - The time between the end of one service visit and the next call for service is exponentially distributed, (mean = $1/\lambda$).
 - Service times are also exponentially distributed.
 - c parallel servers and system capacity is K.
Steady-State Behavior of Finite-Population Models

- Some of the steady-state probabilities:

\[P_0 = \left\{ \sum_{n=0}^{c-1} \binom{K}{n} \left(\frac{\lambda}{\mu} \right)^n + \sum_{n=c}^{K} \frac{K!}{(K-n)!} c! c^{n-c} \left(\frac{\lambda}{\mu} \right)^n \right\}^{-1} \]

\[P_n = \begin{cases}
\binom{K}{n} \left(\frac{\lambda}{\mu} \right)^n P_0, & n = 0,1,\ldots,c-1 \\
\frac{K!}{(K-n)!} c! c^{n-c} \left(\frac{\lambda}{\mu} \right)^n, & n = c,c+1,\ldots,K
\end{cases} \]

\[L = \sum_{n=0}^{K} nP_n, \quad w = L / \lambda_e, \quad \rho = \lambda_e / c\mu \]

where \(\lambda_e \) is the long run effective arrival rate of customers to queue (or entering/exiting service)

\[\lambda_e = \sum_{n=0}^{K} (K-n) \lambda P_n \]
Steady-State Behavior of Finite-Population Models

- Example: two workers who are responsible for 10 milling machines.
 - Machines run on the average for 20 minutes, then require an average 5-minute service period, both times exponentially distributed: \(\lambda = \frac{1}{20} \) and \(\mu = \frac{1}{5} \).
 - All of the performance measures depend on \(P_0 \):
 \[
 P_0 = \left\{ \sum_{n=0}^{2-1} \binom{10}{n} \left(\frac{5}{20}\right)^n + \sum_{n=2}^{10} \frac{10!}{(10-n)!2!2^{n-2}} \left(\frac{5}{20}\right)^n \right\}^{-1} = 0.065
 \]
 - Then, we can obtain the other \(P_n \).
 - Expected number of machines in system:
 \[
 L = \sum_{n=0}^{10} nP_n = 3.17 \text{ machines}
 \]
 - The average number of running machines:
 \[
 K - L = 10 - 3.17 = 6.83 \text{ machines}
 \]
Networks of Queues

- Many systems are naturally modeled as networks of single queues: customers departing from one queue may be routed to another.

- The following results assume a stable system with infinite calling population and no limit on system capacity:
 - Provided that no customers are created or destroyed in the queue, then the departure rate out of a queue is the same as the arrival rate into the queue (over the long run).
 - If customers arrive to queue i at rate λ_i, and a fraction $0 \leq p_{ij} \leq 1$ of them are routed to queue j upon departure, then the arrival rate form queue i to queue j is $\lambda_i p_{ij}$ (over the long run).
Networks of Queues

The overall arrival rate into queue j:

$$\lambda_j = a_j + \sum_{i \text{ all } i} \lambda_i p_{ij}$$

- Arrival rate from outside the network
- Sum of arrival rates from other queues in network

If queue j has $c_j < \infty$ parallel servers, each working at rate μ_i, then the long-run utilization of each server is $\rho_j = \lambda_j / (c_j \mu_j)$ (where $\rho_j < 1$ for stable queue).

If arrivals from outside the network form a Poisson process with rate a_j for each queue j, and if there are c_j identical servers delivering exponentially distributed service times with mean $1/\mu_j$, then, in steady state, queue j behaves like an $M/M/c_j$ queue with arrival rate $\lambda_j = a_j + \sum_{i \text{ all } i} \lambda_i p_{ij}$.
Network of Queues

Discount store example:

- Suppose customers arrive at the rate 80 per hour and 40% choose self-service. Hence:
 - Arrival rate to service center 1 is \(\lambda_1 = 80(0.4) = 32 \) per hour
 - Arrival rate to service center 2 is \(\lambda_2 = 80(0.6) = 48 \) per hour.
- \(c_2 = 3 \) clerks and \(\mu_2 = 20 \) customers per hour.
- The long-run utilization of the clerks is:
 \[\rho_2 = \frac{48}{(3 \times 20)} = 0.8 \]
- All customers must see the cashier at service center 3, the overall rate to service center 3 is \(\lambda_3 = \lambda_1 + \lambda_2 = 80 \) per hour.
 - If \(\mu_3 = 90 \) per hour, then the utilization of the cashier is:
 \[\rho_3 = \frac{80}{90} = 0.89 \]
Introduced basic concepts of queueing models.

Show how simulation, and sometimes mathematical analysis, can be used to estimate the performance measures of a system.

Commonly used performance measures: \(L, L_Q, w, w_Q, \rho, \) and \(\lambda_e \).

When simulating any system that evolves over time, analyst must decide whether to study transient behavior or steady-state behavior.

- Simple formulas exist for the steady-state behavior of some queues.

- Simple models can be solved mathematically, and can be useful in providing a rough estimate of a performance measure.