1. Let X and Y be random variables with the joint probability density function:

\[
f(x, y) = \begin{cases}
(k^2)(1 - x) & \text{if } 0 \leq y, x \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

- Find a value for k such that $f(x, y)$ is a proper probability density function. Is there more than one value for k?
- Find the marginal distributions for X and Y.
- Are X and Y independent?
- Find the Variance of these two random variables.

2. From past experience, a professor knows that the test score of a student taking her final examination is a random variable with mean 75.

- Give an upper bound for the probability that a student’s test score will exceed 85. Suppose, in addition, that the professor knows that the variance of a student’s test score is equal to 25.
- What can be said about the probability that a student will score between 65 and 85?
- How many students would have to take the examination to ensure, with probability at least .9, that the class average would be within 5 of 75? Do not use the central limit theorem.
- Use the central limit theorem to solve previous part.

3. Suppose a fair coin is tossed 1000 times. If the first 100 tosses all result in heads, what proportion of heads would you expect on the final 900 tosses?

4. Let x_1, x_2, \ldots, x_n be a random samples from a Bernoulli distribution with parameter p:
 a) Formulate an estimator for p.
 b) Calculate the expected value of this estimator then, show that this estimator is unbiased.
 c) Calculate the variance of this estimator then, show that, when $n \to \infty$, this estimator is consistent.

5. Explain briefly:
 - The difference between maximum-likelihood estimation and maximum a posteriori estimation.
 - Define Bayes estimator $\hat{\theta}$ then, consider $J(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$ (Minimum mean square) as a risk function. Formulate Bayes estimator using this risk function.

6. Suppose, we have two independent sonar measurements (z_1, z_2) of position x. The sensor error may be modeled as $P(z_1|x) = N(x, 10^2)$ and $P(z_2|x) = N(x, 20^2)$. By measuring, we obtained sensor readings of $z_1 = 130$ and $z_2 = 170$. Considering these reading, determine the maximum-likelihood estimator of x.

\[\text{Page 7} \]
7. a) For the previous question, suppose in addition we have prior information that

\[P(x) \sim N(150, 30^2) \]

determine the maximum a posteriori estimator for \(x \).

b) Suppose

\[\sigma_L^2 = \sigma_1^2 + \sigma_2^2 \]

Compare MAP and ML estimators, then consider the following cases and explain them:
I) If \(\sigma_L \) is large
II) If \(\sigma_p \) is large

8. Let \(x_1, x_2, \ldots, x_n \) be i.i.d. random variables with the following PDF:

\[
 f_x(x; \theta) = \begin{cases}
 e^{-(x-\theta)} & x \geq \theta \\
 0 & x < \theta
 \end{cases}
\]

Where \(\theta \) is an unknown parameter. Find the maximum-likelihood estimate of \(\theta \).

9. For the previous question, suppose prior probability of \(\theta \) has the following distribution:

\[
 f_\theta(\theta) = \begin{cases}
 e^{\theta-\alpha} & \theta \leq \alpha \\
 0 & \theta > \alpha
 \end{cases}
\]

Find the MAP estimate for \(\theta \).

10. Let \(x_1, x_2, \ldots, x_n \) be a random samples from the exponential distribution with parameter \(\theta \). Assume a \(\text{Gama}(\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \) prior for \(\theta \) and formulate a Bayes estimator for \(\theta \).

11. Let \(x_1, x_2, \ldots, x_n \) be a random samples from the Gaussian distribution \(N(\mu, \sigma^2) \).

Maximum-likelihood estimation gives us:

\[
 \hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n}
\]

\[
 \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i - \hat{\mu})^2}{n}
\]

Are these estimators unbiased? if not, how can we unbiased them?