Massive Data Algorithmics

Lecture 12: Cache-Oblivious Model
Typical Computer

Processor speed: 2.4 – 3.2 GHz

L3 cache size: 0.5 – 2 MB

Memory: 1/4 – 4 GB

Hard Disk: 36 GB – 146 GB

CD/DVD: 7.200 – 15.000 RPM, 8 – 48x

L2 cache size: 256 – 512 KB

L2 cache line size: 128 Bytes

L1 cache line size: 64 Bytes

L1 cache size: 16 KB
Hierarchical Memory Basics

- Data moved between adjacent memory level in blocks

Increasing access time and space
A Trivial Program

for (i=0; i+d<n; i+=d) A[i]=i+d;
A[i]=0;

for (i=0, j=0; j<8\times1024\times1024; j++) i=A[i],
A Trivial Program: $d = 1$

$\text{RAM : } n \approx 2^{25} \approx 128 \text{ MB}$
A Trivial Program: $d = 1$

$L1: n \approx 2^{12} \equiv 16\ KB$

$L2: n \approx 2^{16} \equiv 256\ KB$
A Trivial Program: \(n = 2^{24} \)
Experiments were performed on a DELL 8000, Pentium III, 850 MHz, 128MB RAM, running Linux 2.4.2, and using gcc version 2.96 with optimization -O3

L1 instruction and data caches
- 4-way set associative, 32-byte line size
- 16 KB instruction cache and 16KB write-back data cache

L2 level cache
- 8-way set associative, 32-byte line size
- 256KB
- Memory hierarchy has become a fact of life
- Accessing non-local storage may take a very long time
- Good locality is important for achieving high performance

<table>
<thead>
<tr>
<th></th>
<th>Latency</th>
<th>Relative to CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>0.5 ns</td>
<td>1</td>
</tr>
<tr>
<td>L1 cache</td>
<td>0.5 ns</td>
<td>1-2</td>
</tr>
<tr>
<td>L2 cache</td>
<td>3 ns</td>
<td>2-7</td>
</tr>
<tr>
<td>DRAM</td>
<td>150 ns</td>
<td>80-200</td>
</tr>
<tr>
<td>TLB</td>
<td>500+ ns</td>
<td>200-2000</td>
</tr>
<tr>
<td>Disk</td>
<td>10 ms</td>
<td>10^7</td>
</tr>
</tbody>
</table>
Modern hardware is not uniform many different parameters
- Number of memory levels
- Cache sizes
- Cache line/disk block sizes
- Cache associativity
- Cache replacement strategy
- CPU/BUS/memory speed

Programs should ideally run for many different parameters
- by knowing many of the parameters at runtime
- by knowing few essential parameters
- ignoring the memory hierarchies
Hierarchical Memory Model—many parameters

- Limited success since model too complicated

Massive Data Algorithmics

Lecture 12: Cache-Oblivious Model
I/O Model—two parameters

- Measure number of block transfers between two memory levels
- Very successful (simplicity)

Limitations
- Parameters B and M must be known
- Does not handle multiple memory levels
- Does not handle dynamic M
Ideal Cache Model—no parameters!?

- Program with only one memory
- Analyze in the I/O model for
- Optimal off-line cache replacement strategy arbitrary B and M

Advantages

- Optimal on arbitrary level \Rightarrow optimal on all levels
- Portability, B and M not hard-wired into algorithm
- Dynamic changing parameters
Justification of the Ideal Cache Model

- **Optimal replacement**: LRU + $2 \times \text{cache size} \Rightarrow \text{at most } 2 \times \text{cache misses}$
- **Fully associativity cache**: Simulation using hashing
- **Tall-cache assumption**: height is bigger than width $\Rightarrow \frac{M}{B} \geq B$
Write data in a contiguous segment of memory

\[
\begin{align*}
 sum &= 0 \\
 \text{for } i = 1 \text{ to } N \text{ do } sum &= sum + A[i]
\end{align*}
\]

\[O\left(\frac{N}{B}\right) \text{ I/Os}\]
Median

- Conceptually partition the array into \(N/5 \) quintuplets of \(v \) adjacent elements each.
- Compute the median of each quintuplet using \(O(1) \) comparisons.
- Recursively compute the median of these medians.
- Partition the elements of the array into two groups, according to whether they are at most or strictly greater than this median.
- Count the number of elements in each group, and recurse into the group that contains the element of the desired rank.
Each step can be done with at most 3 parallel scans.

\[T(N) = T(N/5) + T(7N/10) + O(N/B) \]

\[T(O(1)) = O(1) \Rightarrow T(N) = \Omega(N^c) \text{ where } \left(\frac{1}{5}\right)^c + \left(\frac{7}{10}\right)^c = 1 \]
\[(c = 0.839) \]

\[T(N) = \Omega(N^c) \text{ is larger than } N/B \text{ when } N \text{ is larger than } B \text{ and smaller than } BN^c \]

But \[T(O(B)) = O(1) \Rightarrow (N/B)^c \text{ leaves in the recursion tree.} \]

\[O((N/B)^c) = o(N/B) \text{ memory transfer} \]

Cost per level decrease geometrically

Total cost: \[O(N/B) \]
Matrix Multiplication

Problem

\[Z = X \cdot Y \quad z_{ij} = \sum_{k=1}^{n} x_{ik} y_{kj} \]

Lay out
Matrix Multiplication

Algorithm 1: Nested Loops

- Row major
- Reading a column of Y, N I/Os
- Total $O(N^3)$ I/Os
- if Y is columns major ⇒ $O(N^3/B)$ I/Os

Algorithm 2: cache aware

- Partition into $s \times s$ blocks
- $s = O(\sqrt{M})$
- Apply algorithm 1 to $N/s \times N/s$ matrices where elements are $s \times s$ matrices
- Row major and $M = O(B^2)$
- $O((N/s)^3.s^2/B) = O(N^3/(B\sqrt{M})$ I/Os
Matrix Multiplication

\[
\begin{pmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{pmatrix}
\begin{pmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{pmatrix}
= \begin{pmatrix}
X_{11}Y_{11} + X_{12}Y_{21} & X_{11}Y_{12} + X_{12}Y_{22} \\
X_{21}Y_{11} + X_{22}Y_{21} & X_{21}Y_{12} + X_{22}Y_{22}
\end{pmatrix}
\]

- 8 recursive \(\frac{N}{2} \times \frac{N}{2} \) multiplications + 4 \(\frac{N}{2} \times \frac{N}{2} \) matrix sums
- # I/Os if row major and \(M = \Omega(B^2) \)

\[
T(N) \leq \begin{cases}
O\left(\frac{N^2}{B}\right) & \text{if } N \leq \varepsilon \sqrt{M} \\
8 \cdot T\left(\frac{N}{2}\right) + O\left(\frac{N^2}{B}\right) & \text{otherwise}
\end{cases}
\]

\[
T(N) \leq O\left(\frac{N^3}{B\sqrt{M}}\right)
\]
Static Search Tree

- Sorted array
- $T(N) = T(N/2) + 1$
- $T(B) = O(1)$
- $T(N) = \log N - \log B \gg \log_B N$
Static Search Tree

Searches use $O(\log_B N)$ I/Os
Static Search Tree

Searches use $O(\log_B N)$ I/Os

Range reportings use $O\left(\log_B N + \frac{K}{B}\right)$ I/Os
Ordered File

Maintaining a sequence of elements in order in memory, with constant size gaps, subject to \(N \) insertions and deletions of elements in the middle of the order

Two extremes of trivial (inefficient) solutions

- Avoid gaps: \(O(N/B) \) memory transfers
- Allocate \(2^N \) memory, and the new element is stored in midway between the two given elements: \(O(1) \) memory transfers
Ordered File

- Fix N: whenever N grows or shrinks by a constant factor (2 for instance), rebuild the entire the data structure
- Conceptually divide the array of size N into subranges of size $O(\log N)$
- Conceptually construct a complete binary tree over subranges: height $h = \log N - \log \log N$
- Density of a node: the number of elements below that node divided by the total capacity of that node
- Density constraint to each node: for nodes at depth d density must be between $\frac{1}{2} - \frac{1}{4}d/h (\in [1/4, 1/2])$ and $\frac{3}{4} + \frac{1}{4}d/h (\in [3/4, 1])$
Ordered File: Updates

- **Insertion:**
 - If there is space in the relevant leaf subrange, we can accommodate the new element by possibly moving $O(\log N)$ moves.
 - Otherwise, we walk up the tree by scanning elements until we find an ancestor within threshold.
 - We rebalance this ancestor by redistributing all of its element uniformly throughout the constituent leaves \Rightarrow every descendant will be within threshold as density constraint increase walking down the tree.

- **Deletion:** In a similar way
The difference in density threshold of two adjacent levels is $O\left(\frac{1}{4}h\right) = O\left(\frac{1}{\log N}\right)$

If the node has capacity K, $\Theta\left(\frac{K}{\log N}\right)$ elements should be inserted or deleted in order to fall outside the threshold again.

Amortized cost of inserting and deleting below a particular node is $\Theta\left(\log N\right)$

Each element falls below $h = \Theta\left(\log N\right)$ nodes \Rightarrow total amortized cost: $\Theta\left(\log^2 N\right)$

$\Rightarrow O\left(\log^2 N\right)$ time and $O\left((\log^2 N)/B\right)$ memory transfers
B-trees

- A combination of two structures
 - An ordered file
 - A static search tree with size N
- We also maintain a fix one-to-one correspondence bidirectional pointers between cell in ordered files and leafs in the tree
- Each node of the tree store the maximum (non-blank) key of its two children
B-trees: search

- Based on the maximum key stored in the left child we can decide go to left or right
- Since the tree is stored in Van Emde Boas layout, search needs $O(\log_B N)$ memory transfers
B-trees: Update

- Search in the tree for the location of given element
- Insert in the ordered file
- Let K be the number of movements in ordered file (K amortized is $O(\log^2 N)$)
- Leaves of tree corresponding to the affected K cells in ordered file must be updated using bidirectional pointers: $O(K/B)$ memory transfers
- The key changes are propagated up the tree (using post-order traversal) to all ancestors to updates maximum keys stored in internal nodes: $O(K/B + \log_B N)$ memory transfers

\Rightarrow Updates: $O(\log_B N + (\log^2 N)/B)$ memory transfers
Merge Sort

Output: 0 2 3 4 4 4 4 4 6 8 8

Input: 3 4 8 2 8 4 4 0 6 4

Merging

Merging

Merging

Merging

Merging
Merge Sort

<table>
<thead>
<tr>
<th>Degree</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$O\left(\frac{N}{B} \log_2 \frac{N}{M}\right)$</td>
</tr>
<tr>
<td>$d \leq \frac{M}{B} - 1$</td>
<td>$O\left(\frac{N}{B} \log_d \frac{N}{M}\right)$</td>
</tr>
<tr>
<td>$\Theta\left(\frac{M}{B}\right)$</td>
<td>$O\left(\frac{N}{B} \log_{M/B} \frac{N}{M}\right) = O(\text{Sort}_{M,B}(N))$</td>
</tr>
</tbody>
</table>
Sorted output stream

\[M \]

\(k \) sorted input streams
K-Merger

Sorted output stream

Recursive def.

k sorted input streams

M_0

B_1 \cdots $B_{\sqrt{k}}$

M_1

$M_{\sqrt{\sqrt{k}}}$

$\leftarrow k^{1/2}$-mergers

\leftarrow buffers of size $k^{3/2}$
K-Merger

Sorted output stream

 Recursive def.

M

k sorted input streams

M_0 B_1 M_1 B_2 M_2 \cdots $B_{\sqrt{k}}$ $M_{\sqrt{k}}$

Recursive Layout

$\leftarrow k^{1/2}$-mergers

\leftarrow buffers of size $k^{3/2}$
Procedure $\text{Fill}(v)$

while out-buffer not full

if left in-buffer empty

\text{Fill}(\text{left child})

if right in-buffer empty

\text{Fill}(\text{right child})

perform one merge step

Lemma

If $M \geq B^2$ and output buffer has size k^3 then $O\left(\frac{k^3}{B} \log_M (k^3) + k\right)$ I/Os are done during an invocation of $\text{Fill}(\text{root})$
Funnel Sort

- Divide input in $N^{1/3}$ segments of size $N^{2/3}$
- Recursively Funnel-Sort each segment
- Merge sorted segments by an $N^{1/3}$-merger

$$T(N) = N^{1/3}T(N^{2/3}) + O\left(\frac{N}{B} \log_{M/B} \frac{N}{B} + N^{1/3}\right) \text{ and } T(B^2) = O(B) \Rightarrow T(N) = O(\text{sort}(N))$$
Cache oblivious algorithms and data structures
Lecture notes by Erik D. Demaine.