Computing the Solution Concepts

Game Theory

MohammadAmin Fazli
TOC

• Computing the Nash equilibria of simple games
• An introduction to LP
• Computing the Nash equilibria of two-player, zero-sum games
• PPAD Complexity Class
• Computing the Nash equilibria of two-player, general-sum games
• Computing the Nash equilibria of n-player, general-sum games
• Reading:
 • Chapter 4 of the MAS book
 • Thomas Ferguson lecture on LP
 • Christos Papadimitriou lecture on the complexity of finding a Nash equilibrium
Computing Nash Equilibria in Simple Games

• We will learn that it’s hard in general
• Finding Pure Nash equilibria is easy especially in simple games
• Finding Mixed Nash equilibria is hard but it’s easy when you can guess the support

• Example: For BoS, let’s look for an equilibrium where all actions are part of the support (see the blackboard)

\[
\begin{align*}
\begin{array}{c|cc}
& B & F \\
\hline
B & 2, 1 & 0, 0 \\
\hline
F & 0, 0 & 1, 2 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
2p + 0(1 - p) &= 0p + 1(1 - p) \\
p &= \frac{1}{3}
\end{align*}
\]

\[
\begin{align*}
q + 0(1 - q) &= 0q + 2(1 - q) \\
q &= \frac{2}{3}
\end{align*}
\]
Computing Nash Equilibria in Simple Games

 • See the blackboard

<table>
<thead>
<tr>
<th>Kicker/Goalie</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>0.58, 0.42</td>
<td>0.95, 0.05</td>
</tr>
<tr>
<td>Right</td>
<td>0.93, 0.07</td>
<td>0.70, 0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nash Freq.</th>
<th>Goalie (Left)</th>
<th>Goalie (Right)</th>
<th>Kicker (Left)</th>
<th>Kicker (Right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Freq.</td>
<td>.42</td>
<td>.58</td>
<td>.38</td>
<td>.62</td>
</tr>
</tbody>
</table>

MohammadAmin Fazli
Removal of Dominated Strategies

• Iterated Removal of Strictly Dominated Strategies (From Chapter 2)
Removal of Dominated Strategies

- Iterated Removal of Strictly Dominated Strategies (From Chapter 2)

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3,1</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>M</td>
<td>1,1</td>
<td>1,1</td>
<td>5,0</td>
</tr>
<tr>
<td>D</td>
<td>0,1</td>
<td>4,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3,1</td>
<td>0,1</td>
</tr>
<tr>
<td>M</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>D</td>
<td>0,1</td>
<td>4,1</td>
</tr>
</tbody>
</table>

M is dominated by the mixed strategy that selects U and D with equal probability.
Removal of Dominated Strategies

• This process preserves Nash equilibria.
 • It can be used as a preprocessing step before computing an equilibrium
 • Some games are solvable using this technique - those games are dominance solvable.
 • The order of removal is not important

• Removing Weakly dominated strategies:
 • At least one equilibrium preserved.
 • Order of removal can matter.
Linear Programming

• Find numbers x_1, x_2 that maximize the sum $x_1 + x_2$ subject to the constraints $x_1 \geq 0$ and $x_2 \geq 0$ and

\[
\begin{align*}
 x_1 + 2x_2 & \leq 4 \\
 4x_1 + 2x_2 & \leq 12 \\
 -x_1 + x_2 & \leq 1
\end{align*}
\]
The Standard Maximum LP Problem

• Find and n-vector, $x = (x_1, x_2, ..., x_n)^T$ to maximize

$$c^T x = c_1 x_1 + \cdots + c_n x_n$$

Subject to the constraints

$$a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \leq b_1$$
$$a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n \leq b_2$$
$$\vdots$$
$$a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n \leq b_m$$

(or $Ax \leq b$)

$$x_1 \geq 0, x_2 \geq 0, \ldots, x_n \geq 0$$

(or $x \geq 0$)
The Standard Minimum LP Problem

• Find an m-vector, \(y = (y_1, \ldots, y_m) \), to minimize

\[
y^Tb = y_1b_1 + \cdots + y_mb_m
\]

Subject to the constraints

\[
y_1a_{11} + y_2a_{21} + \cdots + y_ma_{m1} \geq c_1
\]
\[
y_1a_{12} + y_2a_{22} + \cdots + y_ma_{m2} \geq c_2
\]
\vdots
\[
y_1a_{1n} + y_2a_{2n} + \cdots + y_ma_{mn} \geq c_n
\]

\[
y_1 \geq 0, y_2 \geq 0, \ldots, y_m \geq 0 \quad \text{(or } y \geq 0)\]
Duality

• The dual of the standard maximum problem

\[
\text{maximize } \mathbf{c}^T \mathbf{x} \\
\text{subject to the constraints } \mathbf{A} \mathbf{x} \leq \mathbf{b} \text{ and } \mathbf{x} \geq 0
\]

is defined to be the standard minimum problem

\[
\text{minimize } \mathbf{y}^T \mathbf{b} \\
\text{subject to the constraints } \mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T \text{ and } \mathbf{y} \geq 0
\]

maximize \(x_1 + x_2 \)
\[
\begin{align*}
x_1 + 2x_2 & \leq 4 \\
4x_1 + 2x_2 & \leq 12 \\
-x_1 + x_2 & \leq 1.
\end{align*}
\]

minimize \(4y_1 + 12y_2 + y_3 \)
\[
\begin{align*}
y_1 + 4y_2 - y_3 & \geq 1 \\
2y_1 + 2y_2 + y_3 & \geq 1.
\end{align*}
\]
LP Optimality Facts

• **Polynomial Time Algorithm:** LPs are solvable in polynomial time

• **Weak Duality Theorem:** If \(x \) is feasible for the standard maximum problem and if \(y \) is feasible for its dual then \(c^T x \leq y^T b \)

• **Strong Duality Theorem:** If a standard linear programming problem is bounded feasible, then so is its dual, their values are equal, and there exists optimal vectors for both problems.

• **The Equilibrium Theorem:** Let \(x^* \) and \(y^* \) be feasible vectors for a standard maximum problem and its dual respectively. Then \(x^* \) and \(y^* \) are optimal if, and only if,

\[
y_i^* = 0 \quad \text{for all } i \text{ for which } \sum_{j=1}^{n} a_{ij} x_j^* < b_i
\]

and

\[
x_j^* = 0 \quad \text{for all } j \text{ for which } \sum_{i=1}^{m} y_i^* a_{ij} > c_j
\]
Computing Nash Equilibria in Two-players Zero-sum Games

• The minmax theorem tells us that U_1^* holds constant in all equilibria and that it is the same as the value that player 1 achieves under a minmax strategy by player 2.

\[
\begin{align*}
\text{minimize} & \quad U_1^* \\
\text{subject to} & \quad \sum_{k \in A_2} u_1(a_1^j, a_2^k) \cdot s_2^k \leq U_1^* & \forall j \in A_1 \\
& \quad \sum_{k \in A_2} s_2^k = 1 \\
& \quad s_2^k \geq 0 & \forall k \in A_2
\end{align*}
\]
Computing Nash Equilibria in Two-players Zero-sum Games

• We can construct a linear program to give us player 1’s mixed strategies. This program reverses the roles of player 1 and player 2 in the constraints; the objective is to maximize U_1^*, as player 1 wants to maximize his own payoffs. This corresponds to the dual of player 2’s program.

\[
\begin{align*}
\text{maximize} & \quad U_1^* \\
\text{subject to} & \quad \sum_{j \in A_1} u_1(a_1^j, a_2^k) \cdot s_1^j \geq U_1^* \quad \forall k \in A_2 \\
\sum_{j \in A_1} s_1^j & = 1 \\
s_1^j & \geq 0 \\
\end{align*}
\]
Computing Nash Equilibria in Two-players Zero-sum Games

• LP with slack variables (needed for next slides)

\[
\begin{align*}
\text{minimize} & \quad U_1^* \\
\text{subject to} & \quad \sum_{k \in A_2} u_1(a_1^j, a_2^k) \cdot s_2^k + r_1^j = U_1^* \quad \forall j \in A_1 \\
& \quad \sum_{k \in A_2} s_2^k = 1 \\
& \quad s_2^k \geq 0 \quad \forall k \in A_2 \\
& \quad r_1^j \geq 0 \quad \forall j \in A_1
\end{align*}
\]
An Introduction to the Related Complexity Concepts

• Complexity class **NP**: The class of all search problems. A search problem A is a binary predicate $A(x, y)$ that is efficiently (in polynomial time) computable and balanced (the length of x and y do not differ exponentially). Intuitively, x is an instance of the problem and y is a solution. The search problem for A is this:

“Given x, find y such that $A(x, y)$, or if no such y exists, say “no”.”

• SAT = SAT(ϕ, x): given a Boolean formula ϕ in conjunctive normal form (CNF), find a truth assignment x which satisfies ϕ, or say “no” if none exists.

• Nash = Nash(G, (x, y)): given a game G, find mixed strategies (x, y) such that (x, y) is a Nash equilibrium of G, or say “no” if none exists. Nash is in **NP**, since for a given set of mixed strategies, one can always efficiently check if the conditions of a Nash equilibrium hold or not.
An Introduction to the Related Complexity Concepts

• Reduction: We say problem A reduces to problem B if there exist two functions f and g mapping strings to strings such that
 • f and g are efficiently computable functions, i.e. in polynomial time in the length of the input string;
 • if \(x \) is an instance of A, then f (x) is an instance of B such that:
 • \(x \) is a “no” instance for problem A if and only if f (x) is a “no” instance for problem B
 • B(f(x), y) ⇒ A(x, g(y))

• X-completeness: A problem in class X is X-complete if all problems in X reduce to it.
 • NP-Complete problems: The hardest problems in class NP.
Nash-Equilibria & NP-Completeness

- So, is it NP-complete to find a Nash equilibrium?
 - NO, since a solution is guaranteed to exist...
- However, it is NP-complete to find a “tiny” bit more info than a Nash equilibrium; e.g., the following are NP-complete:
 - (Uniqueness) Given a game G, does there exist a unique equilibrium in G?
 - (Pareto optimality) Given a game G, does there exist a strictly Pareto efficient equilibrium in G?
 - (Guaranteed payoff) Given a game G and a value v, does there exist an equilibrium in G in which some player i obtains an expected payoff of at least v?
 - (Guaranteed social welfare) Given a game G, does there exist an equilibrium in which the sum of agents’ utilities is at least k?
 - (Action inclusion or Exclusion) Given a game G and an action $a_i \in A_i$ for some player i, does there exist an equilibrium of G in which player i plays action a_i with strictly positive (or Zero) probability?
2Nash Problem

• The 2Nash Problem: given a game and a Nash equilibrium, find another one, or output “no” if none exist.
• Theorem: the 2Nash problem is NP-Complete.
 • Proof: See the blackboard.
TFNP Class

• Due to the fact that Nash always has a solution, we are interested more generally in the class of search problems for which every instance has a solution. We call this class TFNP (which stands for total function non-deterministic polynomial).

• $NASH \in TFNP \subseteq NP$

• Is Nash TFNP-complete?
 • Probably not, because TFNP probably has no complete problems
 • Intuitively because the class needs to be defined on a more solid basis than an uncheckable universal statement such as “every instance has a solution.”

• The idea: subordinate TFNP according to the method of proof.
PPAD Complexity Class

• “If a directed graph has an unbalanced node (a vertex with different in-degree and out-degree), then it has another one.” This is the parity argument for directed graphs, which gives rise to the class PPAD.
 • $PPAD \subseteq TFNP$

• Another classes such as PLS, PPP, PPA are defined similarly.

• PPAD is the class of all search problems which always have a solution and whose proof is based on the parity argument for directed graphs.
PPAD Complexity Class

• We are given a graph G where the in-degree and the out-degree of each node is at most 1.
 • there are four kinds of nodes: sources, sinks, midnodes, and isolated vertices.

• Our graph G is exponential in size, since otherwise we would be able to explore the structure of the graph (in particular, we can identify sources and sinks) efficiently; to be specific, suppose G has 2^n vertices, one for every bit string of length n.

• The edges of G will be represented by two Boolean circuits, of size polynomial in n, each with n input bits and n output bits. The circuits are denoted P and S (for potential predecessor and potential successor).
PPAD Complexity Class

• There is a directed edge from vertex \(u \) to vertex \(v \) if and only if \(v = S(u) \) and \(u = P(v) \), i.e. given input \(u \), \(S \) outputs \(v \) and, vice-versa, given input \(v \), \(P \) outputs \(u \).

• Also, we assume that the specific vector \(00 \cdots 0 \) has no predecessor (the circuit \(P \) is so wired that \(P(0^n) = 0^n \)).

• The search problem END OF THE LINE is the following:

 “Given \((S, P)\), find a sink or another source.”

• END OF THE LINE \(\in \text{TFNP} \)

• The class PPAD: The class PPAD contains all search problems in TFNP that reduce to END OF THE LINE.
NASH & the PPAD Class

• Theorem: NASH is PPAD-Complete
 • For games with ≥ 4 players (Daskalakis, Goldberg, Papadimitriou 2005)
 • For games with 3 players (Chen, Deng 2005 & Daskalakis, Papadimitriou 2005)
 • For games with 2 players (Chen, Deng 2006)

• General Proof:
 • $NASH \in PPAD$
 • Reducing END OF THE LINE to NASH
 • $NASH \rightarrow$ BROUWER
 • $BROUWER \rightarrow$ END OF THE LINE
 • See the blackboard and next slides for proof ideas
NASH \rightarrow BROUWER

- Proof idea: Defining graphical games for each mathematical operation. See the black board for $\times \alpha$ operator ($s_{v_2} = \min(\alpha s_{v_1}, 1)$)

Payoffs to v_2:

<table>
<thead>
<tr>
<th>v_2 plays 0</th>
<th>w plays 0</th>
<th>w plays 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2 plays 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v_2 plays 1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Payoffs to w:

<table>
<thead>
<tr>
<th>w plays 0</th>
<th>v_1 plays 0</th>
<th>v_2 plays 0</th>
<th>v_2 plays 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1 plays 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_1 plays 1</td>
<td>α</td>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>w plays 1</td>
<td>v_1 plays 0</td>
<td>v_2 plays 0</td>
<td>v_2 plays 1</td>
</tr>
<tr>
<td>v_1 plays 0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_1 plays 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A cube of 2^{3n} cubletes is defined:

$$K_{ijk} = \{(x, y, z) : \quad i \cdot 2^{-n} \leq x \leq (i + 1) \cdot 2^{-n},$$

$$j \cdot 2^{-n} \leq y \leq (j + 1) \cdot 2^{-n},$$

$$k \cdot 2^{-n} \leq z \leq (k + 1) \cdot 2^{-n}\}$$

Define c_{ijk} to be the center of the K_{ijk}. Define $\phi(c_{ijk}) = c_{ijk} + \delta_{ijk}$ where δ_{ijk} defines its color which is from one the 3 defined vectors: $(\alpha, 0, 0), (0, \alpha, 0), (0, 0, \alpha), (-\alpha, -\alpha, -\alpha)$ where α is a little number
• Proof steps:
 - Embed the input graph in the cube with straight line edges
 - Color the cubelets such that
 • ϕ is defined from the cube to the cube
 • The color of every cubelet is $(-\alpha, -\alpha, -\alpha)$ except the vertices on the edges
 • Panchromatic vertices map to the source and the sink vertices of the input graph
LCP Formulation (2-Player, General-Sum)

\[\sum_{k \in A_2} u_1(a_1^j, a_2^k) \cdot s_2^k + r_1^j = U_1^* \quad \forall j \in A_1 \]

\[\sum_{j \in A_1} u_2(a_1^j, a_2^k) \cdot s_1^j + r_2^k = U_2^* \quad \forall k \in A_2 \]

\[\sum_{j \in A_1} s_1^j = 1, \sum_{k \in A_2} s_2^k = 1 \]

\[s_1^j \geq 0, \quad s_2^k \geq 0 \quad \forall j \in A_1, \forall k \in A_2 \]

\[r_1^j \geq 0, \quad r_2^k \geq 0 \quad \forall j \in A_1, \forall k \in A_2 \]

\[r_1^j \cdot s_1^j = 0, \quad r_2^k \cdot s_2^k = 0 \quad \forall j \in A_1, \forall k \in A_2 \]
Lemke-Howson Algorithm

• The best known algorithm for solving the LCP Formulation
• Strategy labels for the player i’s mixed strategy s_i ($L(s_i) \subseteq A_1 \cup A_2$):
 - each of player i’s actions a_i^j that is not in the support of s_i
 - each of player -i’s actions a_{-i}^j that is a best response by player -i to s_i
• Example:

<table>
<thead>
<tr>
<th></th>
<th>0, 1</th>
<th>6, 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 0</td>
<td>5, 2</td>
<td></td>
</tr>
<tr>
<td>3, 4</td>
<td>3, 3</td>
<td></td>
</tr>
</tbody>
</table>
Lemke-Howson Algorithm

• A strategy profile \((s_1, s_2)\) is Nash equilibrium iff \(L(s_1) \cup L(s_2) = A_1 \cup A_2\)

• The Lemke-Howson algorithm searches the cross product of two virtual graphs \((G_1\) and \(G_2)\) to find a Nash equilibrium (completely labeled strategy profile)
Lemke-Howson Algorithm

• In fact, we do not compute the nodes in advance at all.
• At each step, we find the missing label to be added (called the *entering variable*), and add it.
• Find out which label has been lost (it is called the *leaving variable*).
 • Choose the one with the minimum ratio test
 • Ratio test: We deal with equalities in the form of $v = c + qu + T$ where v is a leaving variable, u is the entering variable (q is its coefficient), c is a constant and T is the remaining part of the equality. We define c/q as its ratio test.
• The process repeats until no variable is lost in which case a solution has been obtained.
Lemke-Howson Algorithm

initialize the two systems of equations at the origin
arbitrarily pick one dependent variable from one of the two systems. This variable enters the basis.

repeat
 identify one of the previous basis variables which must leave, according to the minimum ratio test. The result is a new basis.
 if this basis is completely labeled then
 return the basis // we have found an equilibrium.
 else
 the variable dual to the variable that last left enters the basis.

• See the blackboard for an example.
• Theorem: Lemke-Howson algorithm reaches always reaches a Nash-equilibrium.
Computing the Nash Equilibria of n-player, General-sum Games

• There is no known general algorithm for this problem

• Some ideas sometimes work:
 • Using Newton’s method:
 • A sequence of LCPs each is an approximation for the main problem and creates the next LCP.
 • Using Constrained Optimization methods:
 • Example: \(c_i^j(s) = u_i(a_i^j, s_{-i}) - u_i(s) \) and \(d_i^j(s) = \max(c_i^j(s), 0) \)

\[
\begin{align*}
\text{minimize} & \quad f(s) = \sum_{i \in N} \sum_{j \in A_i} (d_i^j(s))^2 \\
\text{subject to} & \quad \sum_{j \in A_i} s_i^j = 1 \quad & \forall i \in N \\
& \quad s_i^j \geq 0 \quad & \forall i \in N, \forall j \in A_i
\end{align*}
\]