Learning: Incomplete data

Probabilistic Graphical Models
Sharif University of Technology
Spring 2017

Soleymani
Parameter learning for incomplete data

- We now assume that the structure of the model is known and consider learning parameters when the data is incomplete.

- **Goal:** estimate parameters from a dataset \(\mathcal{D} = \{x^{(1)}, \ldots, x^{(N)}\} \) of \(N \) independent, identically distributed (i.i.d.) training samples.
 - Each training sample \(x^{(n)} = [x_O^{(n)}, x_H^{(n)}] \) is a vector that some elements \(x_i^{(n)} \) may be unknown (missing values or hidden variables).

Incomplete data

- **Hidden or latent variables**
 - The variables that are unobserved for all data samples
- **Missing values**
 - For each data sample some of the variables may be missing
Missing At Random (MAR)

- We ignore the missing data mechanism and focus only on the likelihood.
 - We assume that data have been missing at random
 - the mechanism causing values to be missing does not depend on the unobserved values.
Latent variables

Examples of hidden or latent variables:

- In unsupervised learning,
 - Clustering
 - Dimensionality reduction
 - simplified and abstractive view of the data generation process
 - Multi-modal density estimation
- For real variables that we cannot know their values
Incorporate likelihood

- **Complete likelihood**
 - Maximizing likelihood $P(\mathcal{D}|\theta)$ for labeled data is straightforward
 - In directed models (with i.i.d. settings) the likelihood decomposes:
 $$P(\mathcal{D}|\theta) = \prod_{n=1}^{N} P(x^{(n)}|y^{(n)}, \theta_{X|Y}) \prod_{n=1}^{N} P(y^{(n)}|\theta_Y)$$

- **Incomplete likelihood**
 - With Z unobserved, our objective becomes $P(\mathcal{D}|\theta) = \sum_{\mathcal{H}} P(\mathcal{D}, \mathcal{H}|\theta)$
 - All the parameters become coupled together via marginalization:
 $$P(\mathcal{D}|\theta) = \sum_{\mathcal{H}} P(\mathcal{D}, \mathcal{H}|\theta) = \sum_{\mathcal{H}} \prod_{n=1}^{N} P(x^{(n)}, z^{(n)}|\theta)$$
 $$= \prod_{n=1}^{N} \sum_{z^{(n)}} P(x^{(n)}|z^{(n)}, \theta_{X|Z}) P(z^{(n)}|\theta_Z)$$
Complexity of the incomplete likelihood function

\[P(\mathcal{D}|\theta) = \sum_{\mathcal{H}} P(\mathcal{D}, \mathcal{H}|\theta) \]

- Incomplete likelihood is the sum of likelihood functions, one for each possible joint assignment of the missing values.
- If each one of the complete likelihood is a unimodal function. Their sum, however, can be multimodal.
 - In the worst case, the likelihood of each of the possible assignments to missing values contributes to a different peak in the likelihood function.
 - The number of possible assignments is exponential in the total number of missing values.
Optimization methods to maximize incomplete likelihood

- Gradient-based methods
 - need to ensure that parameters in each iteration define legal CPDs
 - For reasonable convergence, need to combine with advanced methods
 - Line-search, conjugate gradient

- Expectation Maximization (EM)
 - Special-purpose algorithm designed for optimizing likelihood functions
 - no learning rate (i.e., step-size) parameter is required
 - automatically enforces parameter constraints
EM algorithm

- General algorithm for finding ML estimation when the data is incomplete (missing or unobserved data).

- Assumptions: \(D \) (observed or known variables), \(H \) (unobserved or latent variables), data come from a specific model with unknown parameters \(\theta \)
 - If \(H \) is relevant to \(D \) (in any way), we can hope to extract information about it from \(D \) assuming a specific parametric model on the data.

- An iterative algorithm in which each iteration is guaranteed to improve the log-likelihood function
EM intuition

- When learning with incomplete data, we are trying to solve two problems at once:
 - hypothesizing values for the unobserved variables in each data sample
 - learning the parameters

- Each of these tasks is fairly easy when we have the solution to the other:
 - Given complete data, we have the statistics, and we can estimate parameters using the MLE formulas.
 - Conversely, computing probability of unobserved variables given the parameters is an inference problem
EM algorithm

\[\mathcal{D}: \text{observed variables} \]
\[\mathcal{H}: \text{Unobserved variables} \]
\[\theta: \text{parameters} \]

Expectation step (E-step): given the current parameters, find soft completion of the data, using probabilistic inference.

Maximization step (M-step): We then treat the soft completed data as if it were observed and learn a new set of parameters.

Choose an initial parameters \(\theta^1 \)
\[t \leftarrow 1 \]

Iterate until convergence:

E Step: Calculate \(P(\mathcal{H}|\mathcal{D}, \theta^t) \)

M Step: \(\theta^{t+1} = \arg \max \theta E_{P(\mathcal{H}|\mathcal{D}, \theta^t)}[\log P(\mathcal{D}, \mathcal{H}|\theta)] \)
\[t \leftarrow t + 1 \]

Guaranteed to improve \(\ln P(\mathcal{D}|\theta) \) at each iteration
EM algorithm objective function

- $\ln P(\mathcal{D}, \mathcal{H} | \theta)$ is a random quantity and it cannot be maximized directly.

- EM intends to maximize $E_{P(\mathcal{H} | \mathcal{D}, \theta)}[\ln P(\mathcal{D}, \mathcal{H} | \theta)]$, i.e., expected log complete likelihood:

$$\hat{\theta} = \arg\max_{\theta} E_{P(\mathcal{H} | \mathcal{D}, \theta)}[\ln P(\mathcal{D}, \mathcal{H} | \theta)]$$

- Expected log complete likelihood
 - Linear in $\ln P(\mathcal{D}, \mathcal{H} | \theta)$ and inherit its factorizability
Mixture models: definition

- Mixture models: Linear supper-position of mixtures or components
 - Z: latent or hidden variable specifies the mixture component

$$P(x|\theta) = \sum_{k=1}^{K} P(Z_k = 1) P(x|Z_k = 1, \theta_k)$$

- $\sum_{k=1}^{K} P(Z_k = 1) = 1$
- $P(Z_k = 1)$: the prior probability of k-th mixture
- θ_k: the parameters of k-th mixture
- $P(x|Z_k = 1, \theta_k)$: the probability of x in the k-th mixture

Multi-modal distribution
Gaussian Mixture Models (GMMs)

- **Gaussian Mixture Models:**
 - \(P(x|Z_k = 1) = \mathcal{N}(x|\mu_k, \Sigma_k) \)
 - \(Z \sim \text{Mult}(\pi) \)
 - \(P(Z_k = 1) = \pi_k \)
 - \(0 \leq \pi_k \leq 1 \)
 - \(\sum_{k=1}^{K} \pi_k = 1 \)
 - \(P(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \)

- **Fitting Gaussian mixture model**
 - Input: data points \(\{x^{(i)}\}_{i=1}^{N} \)
 - Goal: find the parameters of GMM \((\pi_k, \mu_k, \Sigma_k, k = 1, ..., K) \)
GMM: 1-D example

\[\begin{align*}
\pi_1 &= 0.6 \\
\pi_2 &= 0.3 \\
\pi_3 &= 0.1 \\
\mu_1 &= -2 \\
\sigma_1 &= 2 \\
\mu_2 &= 4 \\
\sigma_2 &= 1 \\
\mu_3 &= 8 \\
\sigma_3 &= 0.2
\end{align*} \]
EM for GMM

- Initialize $\theta^{old}: \mu_k, \Sigma_k, \pi_k \quad k = 1, \ldots, K$
- **E step:** $n = 1, \ldots, N, k = 1, \ldots, K$
 \[
 \gamma_k^n = P \left(Z_k^n = 1 | x^{(n)}, \theta^{old} \right) = \frac{\pi_k^{old} \mathcal{N}(x^{(n)} | \mu_k^{old}, \Sigma_k^{old})}{\sum_{j=1}^{K} \pi_j^{old} \mathcal{N}(x^{(n)} | \mu_j^{old}, \Sigma_j^{old})}
 \]
- **M Step:** $k = 1, \ldots, K$
 \[
 \mu_k^{new} = \frac{\sum_{n=1}^{N} \gamma_k^n x^{(n)}}{\sum_{n=1}^{N} \gamma_k^n}
 \]
 \[
 \Sigma_k^{new} = \frac{1}{\sum_{n=1}^{N} \gamma_k^n} \sum_{n=1}^{N} \gamma_k^n (x^{(n)} - \mu_k^{new})(x^{(n)} - \mu_k^{new})^T
 \]
 \[
 \pi_k^{new} = \frac{\sum_{n=1}^{N} \gamma_k^n}{N}
 \]
- Repeat E and M steps until convergence

$\theta = [\pi, \mu, \Sigma]$

$z^{(n)} \in \{1, 2, \ldots, K\}$ shows the mixture from which $x^{(n)}$ is generated
EM & GMM: example
EM & GMM: Example

(a) $L = 1$

(b) $L = 2$

(c) $L = 5$

(d) $L = 20$

[Bishop]
EM theoretical analysis

- What is the underlying theory for the use of the expected complete log likelihood in the M-step?

\[E_{P(\mathcal{H}|\mathcal{D},\theta)}[\log P(\mathcal{D},\mathcal{H}|\theta)] \]

- Now, we show that maximizing this function also maximizes the likelihood
EM theoretical foundation:
Objective function

\[\ell(\theta; D) = \log P(D|\theta) = \log \sum_{H} P(D, H|\theta) \]

\[= \log \sum_{H} Q(H) \frac{P(D, H|\theta)}{Q(H)} \geq \sum_{H} Q(H) \log \frac{P(D, H|\theta)}{Q(H)} \]

\[F_D[\theta, Q] \]

\(F_D[\theta, Q] \) is a lower bound on \(\ell(\theta; D) \)

EM optimizes \(F_D[\theta, Q] \)
EM theoretical foundation: Algorithm in general form

- EM is a coordinate ascent algorithm on $F_D[\theta, Q]$. In the t-th iteration,
 - E-step: maximize $F_D[\theta, Q]$ w.r.t. Q
 $$Q^t = \arg\max_Q F_D[\theta^t, Q]$$
 - M-step:
 $$\theta^{t+1} = \arg\max_{\theta} F_D[\theta, Q^t]$$

We will show that each iteration improves the log-likelihood
EM theoretical foundation: E-step

\[Q^t = P(\mathcal{H}|\mathcal{D}, \theta^t) \implies Q^t = \arg\max_Q F_\mathcal{D}[\theta^t, Q] \]

Proof:

\[
F_\mathcal{D}[\theta^t, P(\mathcal{H}|\mathcal{D}, \theta^t)] = \sum_{\mathcal{H}} P(\mathcal{H}|\mathcal{D}, \theta^t) \log \frac{P(\mathcal{D}, \mathcal{H}|\theta^t)}{P(\mathcal{H}|\mathcal{D}, \theta^t)} \\
= \sum_{\mathcal{H}} P(\mathcal{H}|\mathcal{D}, \theta^t) \log P(\mathcal{D}|\theta^t) = \log P(\mathcal{D}|\theta^t) = \ell(\theta^t; \mathcal{D})
\]

- \(F_\mathcal{D}[\theta, Q] \) is a lower bound on \(\ell(\theta; \mathcal{D}) \). Thus, \(F_\mathcal{D}[\theta^t, Q] \) has been maximized by setting \(Q \) to \(P(\mathcal{H}|\mathcal{D}, \theta^t) \):

\[
F_\mathcal{D}[\theta^t, P(\mathcal{H}|\mathcal{D}, \theta^t)] = \ell(\theta^t; \mathcal{D})
\]

\[
\implies P(\mathcal{H}|\mathcal{D}, \theta^t) = \arg\max_Q F_\mathcal{D}[\theta^t, Q]
\]
EM theoretical foundation:
M-step

M-step can be equivalently viewed as maximizing the expected complete log-likelihood:

\[\theta^{t+1} = \arg\max_{\theta} F_D[\theta, Q^t] = \arg\max_{\theta} E_{Q^t} [\log P(\mathcal{D}, \mathcal{H} | \theta)] \]

Proof:

\[F_D[\theta, Q^t] = \sum_{\mathcal{H}} Q^t(\mathcal{H}) \log \frac{P(\mathcal{D}, \mathcal{H} | \theta)}{Q^t(\mathcal{H})} \]

\[= \sum_{\mathcal{H}} Q^t(\mathcal{H}) \log P(\mathcal{D}, \mathcal{H} | \theta) - \sum_{\mathcal{H}} Q^t(\mathcal{H}) \log Q^t(\mathcal{H}) \]

\[\Rightarrow F_D[\theta, Q^t] = E_{Q^t} [\log P(\mathcal{D}, \mathcal{H} | \theta)] + H_{Q^t(\mathcal{H})} \]

Independent of \(\theta \)
EM algorithm

D: observed variables
H: Unobserved variables
θ: parameters

Expectation Maximization (EM) seeks to estimate:

$$\hat{\theta} = \arg \max_{\theta} E_{P(H|D,\theta)} [\log P(D, H|\theta)]$$

Choose an initial parameters θ^1
$t \leftarrow 1$

Iterate until convergence:

E Step: Calculate $P(H|D, \theta^t)$

M Step: $\theta^{t+1} = \arg \max_{\theta} E_{P(H|D,\theta^t)} [\log P(D, H|\theta)]$

$t \leftarrow t + 1$
EM algorithm: illustration
EM theoretical foundation

\(\ell(\theta; \mathcal{D}) = F_{\mathcal{D}}[\theta, Q] + D(Q(\mathcal{H}) || P(\mathcal{H}|\mathcal{D}, \theta)) \)

Proof:

\[
\ell(\theta; \mathcal{D}) - F_{\mathcal{D}}[\theta, Q] = \log P(\mathcal{D}|\theta) - \sum_{\mathcal{H}} Q(\mathcal{H}) \log \frac{P(\mathcal{D}, \mathcal{H}|\theta)}{Q(\mathcal{H})} \\
= \sum_{\mathcal{H}} Q(\mathcal{H}) \left[\log P(\mathcal{D}|\theta) - \log \frac{P(\mathcal{D}, \mathcal{H}|\theta)}{Q(\mathcal{H})} \right] \\
= \sum_{\mathcal{H}} Q(\mathcal{H}) \left[\log Q(\mathcal{H}) - \log \frac{P(\mathcal{D}, \mathcal{H}|\theta)}{P(\mathcal{D}|\theta)} \right] \\
= \sum_{\mathcal{H}} Q(\mathcal{H}) \log \frac{Q(\mathcal{H})}{P(\mathcal{H}|\mathcal{D}, \theta)} = D(Q(\mathcal{H}) || P(\mathcal{H}|\mathcal{D}, \theta))
\]
KL divergence

- Kullback-Leibler divergence between P and Q:
 \[D(P||Q) = \int P(x) \log \frac{P(x)}{Q(x)} \, dx \]

- A result from information theory: For any P and Q
 \[D(P||Q) \geq 0 \]

- $D(P||Q) = 0$ if and only if $P \equiv Q$
- D is asymmetric
EM theoretical foundation
E-step illustration

\[\ell(\theta; D) = F_D[\theta, Q] + D(Q(\mathcal{H}) \parallel P(\mathcal{H}|D, \theta)) \]

- Thus, since \(D(Q||P) \geq 0 \) and \(D(Q||P) = 0 \) iff \(Q(\mathcal{H}) = P(\mathcal{H}|D, \theta) \) then:
 - indeed we select \(Q \) in the E-step such that the gap \(\ell(\theta^{old}; D) - F_D[\theta^{old}, Q] \) removes.
EM iteration increases $\ell(\theta; D)$

\[
\ell(\theta^{t+1}; D) \geq E_{Q_t}[\log P(D, H | \theta^{t+1})] + H_{Q_t}(H)
\]

\[
\ell(\theta^t; D) = E_{Q_t}[\log P(D, H | \theta^t)] + H_{Q_t}(H)
\]

\[
\ell(\theta^{t+1}; D) - \ell(\theta^t; D) \geq E_{Q_t}[\log P(D, H | \theta^{t+1})] - E_{Q_t}[\log P(D, H | \theta^t)]
\]

Moreover, we have:

\[
\theta^{t+1} = \arg\max_{\theta} E_{Q_t}[\log P(D, H | \theta)]
\]

\[
\Rightarrow E_{Q_t}[\log P(D, H | \theta^{t+1})] \geq E_{Q_t}[\log P(D, H | \theta^t)]
\]

\[
\Rightarrow \ell(\theta^{t+1}; D) - \ell(\theta^t; D) \geq 0
\]
EM for exponential family

- We generally have:

\[
E_{P(\mathcal{H}|\mathcal{D},\theta^t)}[\ln P(\mathcal{D}, \mathcal{H}|\theta)] = \sum_{n=1}^{N} \sum_{x_h^{(n)} \in \text{Val}(X_h)} P \left(x_h^{(n)} | x_o^{(n)}, \theta \right) \ln P \left(x_o^{(n)}, x_h^{(n)} | \theta \right)
\]

- For exponential family:

\[
P \left(x_o^{(n)}, x_h^{(n)} | \theta \right) = h \left(x_o^{(n)}, x_h^{(n)} \right) \exp \left\{ \eta^T T \left(x_o^{(n)}, x_h^{(n)} \right) - A(\eta) \right\}
\]

\[x^{(n)} = [x_o^{(n)}, x_h^{(n)}]\]
EM for exponential family

\[E_{P(\mathcal{H}|D,\theta^t)}[\ln P(D, \mathcal{H}|\theta)] = \eta^T \sum_{n=1}^{N} \sum_{x_h^{(n)} \in Val(X_h)} P(x_h^{(n)}|x_o^{(n)}, \theta^t) T(x_o^{(n)}, x_h^{(n)}) - NA(\eta) + C \]

Expected sufficient statistics

E-step: Find expected sufficient statistics

\[\sum_{n=1}^{N} E_{P(x_h^{(n)}|x_o^{(n)}, \theta^t)} [T(x_o^{(n)}, x_h^{(n)})] \]

M-step:

ML estimator uses the above expected sufficient statistics instead of sufficient statistics \(T(D) = \sum_{n=1}^{N} T(x^{(n)}) \) that is used for complete data
EM algorithm: expected sufficient statistics

- **E-step**: computing the expected value of the sufficient statistics

- **M-step**: This is isomorphic to MLE except that we use “expected sufficient statistics” instead of “sufficient statistics”

- **Example**: tabular CPDs in Bayesian networks for the i-th node:

\[
Ess_{\theta_t}[x,u] = \sum_{n=1}^N P(X_i = x, P_a x_i = u|x_0^{(n)}, \theta^t)
\]

\[
\theta_{i,x,u} = \frac{Ess_{i,\theta_t}[x,u]}{\sum_x Ess_{i,\theta_t}[x,u]}
\]
EM for Bayesian networks

- Initialize parameters θ^1
- while not converged
 - Set E to zero for all nodes
- %E-step:
 - For each data sample n
 - Run inference $P(x^{(n)}_h | x^{(n)}_o, \theta^t)$
 - For each node i
 - For each $x, u \in Val(X_i, P_{aX_i})$
 - $M_i[x, u] = M_i[x, u] + P(X_i = x, P_{aX_i} = u | x^{(n)}_o, \theta^t)$
 - %M-step:
 - For each node i
 - For each $x, u \in Val(X_i, P_{aX_i})$
 - $\theta_{i,x,u}^{t+1} = \frac{M_i[x,u]}{M_i[u]}$
 - $t \leftarrow t + 1$
Conditional mixture models: Mixture of linear regression

\[
P(y|x, \theta) = \sum_{k=1}^{K} P(z_k = 1) P(y|z_k = 1, x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(y|w_k^T x, \sigma^2)
\]

\[
\mathcal{D}^X = \{x^{(1)}, \ldots, x^{(N)}\}
\]
\[
\mathcal{D}^Y = \{y^{(1)}, \ldots, y^{(N)}\}
\]

\[
\ln P(\mathcal{D}^Y, \mathcal{H} | \mathcal{D}^X, \theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_k^{(n)} \ln(\pi_k \mathcal{N}(y^{(n)}|w_k^T x^{(n)}, \sigma^2))
\]

\[
E_{P(\mathcal{H} | \mathcal{D}, \theta^t)}[\ln P(\mathcal{D}^Y, \mathcal{H} | \mathcal{D}^X, \theta)]
\]
\[
= \sum_{n=1}^{N} \sum_{k=1}^{K} P(z^{(n)} = k | x^{(n)}, y^{(n)}, \theta^t) \ln(\pi_k \mathcal{N}(y^{(n)}|w_k^T x^{(n)}, \sigma^2))
\]
EM algorithm for mixture of linear regression

- **E step**: $n = 1, \ldots, N, k = 1, \ldots, K$

$$
\gamma^n_k = P \left(z^{(n)} = k | x^{(n)}, y^{(n)}, \theta^{\text{old}} \right) = \frac{\pi^\text{old}_k \mathcal{N} \left(y^{(n)} \mid w^\text{old}_k^T x^{(n)}, \sigma^2 \right)}{\sum_{j=1}^K \pi^\text{old}_j \mathcal{N} \left(y^{(n)} \mid w^\text{old}_j^T x^{(n)}, \sigma^2 \right)}
$$

- **M Step**: $k = 1, \ldots, K$

$$
\pi^\text{new}_k = \frac{\sum_{n=1}^N \gamma^n_k}{N}
$$

\[
\nabla_{w_k} E_{P(\mathcal{H}|\mathcal{D},\theta^t)} \left[\ln P(\mathcal{D}^Y, \mathcal{H}|\mathcal{D}^X, \theta) \right] = \nabla_{w_k} \sum_{n=1}^N \gamma^n_k \left\{ -\frac{1}{2\sigma^2} \left(y^{(n)} - w_k^T x^{(n)} \right)^2 \right\}
\]

\[
\nabla_{w_k} E_{P(\mathcal{H}|\mathcal{D},\theta^t)} \left[\ln P(\mathcal{D}^Y, \mathcal{H}|\mathcal{D}^X, \theta) \right] = 0
\]

$$
\Rightarrow w_{k}^{\text{new}} = (X^T R_k X)^{-1} X^T R_k y
$$

$$
R_k = \text{diag}(\gamma^n_k)
$$
Example

$t = 1$

$t = 30$

$t = 50$

[Bishop]
Example

\[P(y|x, \theta) \]
\[k = 2 \]

\[P(y|x, \theta) \]
\[k = 1 \]
Conditional mixture models: Non-overlapping experts

- We intend to model \(P(y|x) \) using different experts responsible for different regions of the input space.

\[
P(y|x, \theta) = \sum_{k=1}^{K} P(Z = k|x, \xi)P(y|x, Z = k, w, \sigma^2)
\]

Mixing coefficients \(P(Z = k|x, \xi) \) as gating functions
Conditional mixture models: Non-overlapping experts

- Gating functions $\pi_k(x) = P(Z_k = 1|x, \xi)$ must satisfy the usual constraints for mixing coefficients:
 - $0 \leq \pi_k(x) \leq 1$
 - $\sum_{k=1}^{K} \pi_k(x) = 1$

$$P(Z = k|x, \xi) = \text{softmax}(\xi_k^T x) = \frac{e^{\xi_k^T x}}{\sum_{j=1}^{K} e^{\xi_j^T x}}$$
Conditional mixture models: Non-overlapping experts (EM algorithm)

- **E step:** \(n = 1, \ldots, N, k = 1, \ldots, K \)

\[
\gamma^*_k = P \left(z^{(n)} = k | x^{(n)}, y^{(n)}, \theta^{old} \right) = \frac{\pi_k(x^{(n)}, \xi^{old}) \mathcal{N} \left(y^{(n)} \left| w_k^{old} x^{(n)}, \sigma^2 \right. \right)}{\sum_{j=1}^{K} \pi_j(x^{(n)}, \xi^{old}) \mathcal{N} \left(y^{(n)} \left| w_j^{old} x^{(n)}, \sigma^2 \right. \right)}
\]

- **M Step:** \(k = 1, \ldots, K \)

\[
\mathbb{E}_{P(\mathcal{H} | \mathcal{D}, \theta^t)} \left[\ln P(\mathcal{D}^Y, \mathcal{H} | \mathcal{D}^X, \theta) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma^*_k \ln(\pi_k(x^{(n)}, \xi^{old}) \mathcal{N}(y^{(n)} | w_k^{T} x^{(n)}, \sigma^2))
\]

\[
\nabla_{\xi_k} \mathbb{E}_{P(\mathcal{H} | \mathcal{D}, \theta^t)} \left[\ln P(\mathcal{D}^Y, \mathcal{H} | \mathcal{D}^X, \theta) \right] = 0
\]

It does not lead to closed form solution for \(\xi_k \) and so needs a gradient-based optimizer similar to LR

\[
\nabla_{w_k} \mathbb{E}_{P(\mathcal{H} | \mathcal{D}, \theta^t)} \left[\ln P(\mathcal{D}^Y, \mathcal{H} | \mathcal{D}^X, \theta) \right] = \nabla_{w_k} \sum_{n=1}^{N} \gamma^*_k \left\{ -\frac{1}{2\sigma^2} \left(y^{(n)} - w_k^{T} x^{(n)} \right)^2 \right\} = 0
\]

\[
\Rightarrow w_k^{\text{new}} = (X^T R_k X)^{-1} X^T R_k y \quad R_k = \text{diag}(\gamma^*_k)
\]
Undirected models: Learning with incomplete data

- In the incomplete data case, we can use EM algorithm (according to the properties of EM on the exponential family):
 - E step: $M^t_\theta[f_i] = \sum_{n=1}^{N} E_{P(x_h^{(n)}|x_o^{(n)},\theta^t)}[f_i(x_i^{(n)})]$
 - M Step: similar to ML on undirected models with complete data (expected sufficient statistics are used instead of sufficient statistics)

- Or use gradient ascent on $\ell(\theta; D)$ directly:
 - $\nabla_{\theta_i} \ell(\theta; D) = \sum_{n=1}^{N} E_{P(x_h^{(n)}|x_o^{(n)},\theta)}[f_i(x_i^{(n)})] - N \times E_{P(x|\theta)}[f_i(x_i)]$

 x_i: shows the scope of the i-th feature
Reference

- Koller & Friedman, Chapter 19.1-19.2.3 and 20.3.3.
- Jordan, Chapters 10-11.