Information Retrieval
Evaluation in information retrieval

Hamid Beigy
Sharif university of technology

November 5, 2018
Table of contents

1 Introduction

2 Standard test collections

3 Evaluation for unranked retrieval

4 Evaluation for ranked retrieval

5 Assessing relevance

6 System quality and user utility

7 Reading
Introduction (A complete search engine)
Framework for the evaluation of an IR system:

1. **Test collection** consisting of
   - a document collection,
   - a test suite of information needs,
   - a set of relevance judgments for each doc-query pair

2. **Gold-standard** judgment of relevance. The classification of a document either as relevant or as irrelevant wrt an information need

3. The test collection must cover at least 50 information needs
# Table of contents

1. Introduction

2. **Standard test collections**

3. Evaluation for unranked retrieval

4. Evaluation for ranked retrieval

5. Assessing relevance

6. System quality and user utility

7. Reading
Standard test collection

1. **Cranfield collection**: 1398 abstracts of journal articles about aerodynamics, gathered in UK in the 1950s, plus 255 queries and exhaustive relevance judgments

2. **TREC** (Text REtrieval Conference): collection maintained by the US National Institute of Standards and Technology since 1992
   - **TREC Ad Hoc Track**: test collection used for 8 evaluation campaigns led from 1992 to 1999, contains 1.89 million documents and relevance judgments for 450 topics
   - **TREC 6-8**: test collection providing 150 information needs over 528000 newswires
     - current state-of-the-art test collection
     - note that the relevance judgments are not exhaustive
Standard test collection

1. **GOV2**: collection also maintained by the NIST, containing 25 millions of web-pages (larger than other test collections, but smaller than current collection supported by WWW search engines)

2. **NTCIR** (Nii Test Collection for IR systems): various test collections focusing on East Asian languages, mainly used for cross-language IR

3. **CLEF** (Cross Language Evaluation Forum): collection focussing on European languages
   
   http://www.clef-campaign.org

4. **REUTERS**: Reuters 21578 and REUTERS RCV1 containing respectively 21 578 newswire articles and 806 791 documents, mainly used for text classification
# Table of contents

1. Introduction
2. Standard test collections
3. Evaluation for unranked retrieval
4. Evaluation for ranked retrieval
5. Assessing relevance
6. System quality and user utility
7. Reading
Two basic effectiveness measures: **precision** and **recall**

\[ Pr = \frac{\text{#relevant retrieved}}{\text{#retrieved}} \]

\[ Re = \frac{\text{#relevant retrieved}}{\text{#relevant}} \]

In other terms:

<table>
<thead>
<tr>
<th>Relevant</th>
<th>Not relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>true positive (tp)</td>
</tr>
<tr>
<td>Not retrieved</td>
<td>false negative (fn)</td>
</tr>
</tbody>
</table>

\[ Pr = \frac{tp}{tp + fp} \]

\[ Re = \frac{tp}{tp + fn} \]
1. **Accuracy**: proportion of the classification relevant/not relevant that is correct

\[
\text{accuracy} = \frac{tp + tn}{tp + fp + tn + fn}
\]

**Problem**: 99.9% of the collection is usually not relevant to a given query (potential high rate of false positives)

2. Recall and precision are inter-dependent measures:
   - precision usually decreases while the number of retrieved documents increases
   - recall increases while the number of retrieved documents increases
Evaluation for unranked retrieval: F-measure

1. Measure relating precision and recall:

\[ F = \frac{1}{\alpha \times \frac{1}{Pr} + (1 - \alpha) \times \frac{1}{Re}} = \frac{(\beta^2 + 1)Pr \times Re}{\beta^2 Pr + Re}, \quad \beta = \frac{1 - \alpha}{\alpha} \]

2. Most frequently used: balanced \( F_1 \) with \( \beta = 1 \) (or \( \alpha = 0.5 \)):

\[ F_1 = \frac{2 \times Pr \times Re}{Pr + Re} \]

3. Uses a harmonic mean rather than an arithmetic one for dealing with extreme values
### Evaluation for unranked retrieval (example)

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Not relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Not retrieved</td>
<td>60</td>
<td>1,000,000</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1,000,040</td>
</tr>
</tbody>
</table>

|                  | 60       | 1,000,060    |
|                  | 1,000,120|

\[
Pr = \frac{tp}{tp + fp} = \frac{20}{20 + 40} = \frac{1}{3}
\]

\[
Re = \frac{tp}{tp + fn} = \frac{20}{20 + 60} = \frac{1}{4}
\]

\[
F_1 = \frac{2 \times \frac{1}{3} \times \frac{1}{4}}{\frac{1}{3} + \frac{1}{4}} = \frac{2}{7}
\]

---

Hamid Beigy | Sharif university of technology | November 5, 2018

9 / 24
Table of contents

1 Introduction
2 Standard test collections
3 Evaluation for unranked retrieval
4 Evaluation for ranked retrieval
5 Assessing relevance
6 System quality and user utility
7 Reading
Evaluation for ranked retrieval

1. precision, recall and F-measure are set-based measures (order of documents not taken into account)

2. if we consider the first \( k \) retrieved documents, we can compute the precision and recall values.
   we can plot the relation between precision and recall for each value of \( k \)

3. if the \((k + 1)\)st is not relevant then recall is the same, but precision decreases

4. if the \((k + 1)\)st is relevant then recall and precision increase
1. Precision-recall curve:

2. For removing jiggles, interpolation of the precision (smoothing):

\[ P_{\text{inter}}(r) = \max_{r' \geq r} P(r') \]
11-point interpolated average precision:
For each information need, the value $P_{inter}$ is measured for the 11 recall values 0.0, 0.1, 0.2, … 1.0

The arithmetic mean of $P_{inter}$ for a given recall value over the information needs is then computed
Precision at $k$:

For www search engines, we are interested in the proportion of good results among the $k$ first answers (say the first 3 pages). This means precision at a fixed level.

**Pros**: does not need an estimate of the size of the set of relevant documents

**Cons**: unstable measure, does not average well because the number of relevant documents for a query has a strong influence on precision at $k$. 
Precision at k (example)

<table>
<thead>
<tr>
<th>Rank n</th>
<th>Doc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$d_{12}$</td>
</tr>
<tr>
<td>2</td>
<td>$d_{123}$</td>
</tr>
<tr>
<td>3</td>
<td>$d_4$</td>
</tr>
<tr>
<td>4</td>
<td>$d_{57}$</td>
</tr>
<tr>
<td>5</td>
<td>$d_{157}$</td>
</tr>
<tr>
<td>6</td>
<td>$d_{222}$</td>
</tr>
<tr>
<td>7</td>
<td>$d_{24}$</td>
</tr>
<tr>
<td>8</td>
<td>$d_{26}$</td>
</tr>
<tr>
<td>9</td>
<td>$d_{77}$</td>
</tr>
<tr>
<td>10</td>
<td>$d_{90}$</td>
</tr>
</tbody>
</table>

- Blue documents are relevant.
- **$P@n$:** $P@3=0.33$, $P@5=0.2$, $P@8=0.25$
- **$R@n$:** $R@3=0.33$, $R@5=0.33$, $R@8=0.66$
Precision at k (example)

<table>
<thead>
<tr>
<th>Rank</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

X denotes the relevant documents.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P@r 0.2</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>P@r 0.4</td>
<td>0.67</td>
<td>0.4</td>
</tr>
<tr>
<td>P@r 0.6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>P@r 0.8</td>
<td>0.44</td>
<td>0.57</td>
</tr>
<tr>
<td>P@r 1.0</td>
<td>0.5</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Mean Average Precision (MAP): For an information need, the average precision is the arithmetic mean of the precisions for the set of top $k$ documents retrieved after each relevant document is retrieved.

$q_j \in Q$: information need

$\{d_1 \ldots d_j\}$: relevant documents for $q_j$

$R_{jk}$: set of ranked retrieved document from top to $d_k$

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Pr(R_{jk})$$

when $d_l$ ($1 \leq l \leq j$) is not retrieved, $Pr(R_{jl}) = 0$
Mean Average Precision (MAP) (example)

Query 1

<table>
<thead>
<tr>
<th>Rank</th>
<th>( P(doci) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X 1.00</td>
</tr>
<tr>
<td>2</td>
<td>X 0.67</td>
</tr>
<tr>
<td>3</td>
<td>X 0.50</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X 0.40</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X 0.25</td>
</tr>
<tr>
<td>AVG:</td>
<td>0.564</td>
</tr>
</tbody>
</table>

Query 2

<table>
<thead>
<tr>
<th>Rank</th>
<th>( P(doci) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X 1.00</td>
</tr>
<tr>
<td>2</td>
<td>X 0.67</td>
</tr>
<tr>
<td>3</td>
<td>X 0.20</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>AVG:</td>
<td>0.623</td>
</tr>
</tbody>
</table>

\[
MAP = \frac{0.564 + 0.623}{2} = 0.594
\]
Normalized Discounted Cumulative Gain (NDCG): Evaluation made for the top $k$ results

$$NDCG(Q, k) = \frac{1}{|Q|} \sum_{j=1}^{Q} Z_k \sum_{m=1}^{k} 2^{R(j,m)} - 1 \log(1 + m)$$

where

- $R(j, d)$ is the score given by assessors to document $d$ for query $j$
- $Z_k$ is a normalization factor (perfect ranking at $k = 1$)
Table of contents

1. Introduction
2. Standard test collections
3. Evaluation for unranked retrieval
4. Evaluation for ranked retrieval
5. Assessing relevance
6. System quality and user utility
7. Reading
Assessing relevance

1. How good is an IR system at satisfying an information need?

2. Needs an agreement between judges

→ computable via the **kappa** statistic:

\[ \kappa = \frac{P(A) - P(E)}{1 - P(E)} \]

where:

- \( P(A) \) is the proportion of agreements within the judgments
- \( P(E) \) is the probability that two judges agreed by chance
Assessing relevance: an example

Consider the following judgments (from Manning et al., 2008):

<table>
<thead>
<tr>
<th>Judge 1</th>
<th>Judge 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

\[
P(A) = \frac{300 + 70}{400} = \frac{370}{400} = 0.925
\]

\[
P(\text{rel}) = \frac{320 + 310}{400 + 400} = 0.7878
\]

\[
P(\text{notrel}) = \frac{80 + 90}{400 + 400} = 0.2125
\]

\[
P(E) = P(\text{rel})^2 + P(\text{notrel})^2 = (0.2125)^2 + (0.7878)^2 = 0.665
\]

\[
kappa = \frac{P(A) - P(E)}{1 - P(E)} = \frac{0.925 - 0.665}{1 - 0.665} = 0.776
Assessing relevance (continued)

1. Interpretation of the kappa statistic $k$:
   - $k \geq 0.8$ good agreement
   - $0.67 \leq k < 0.8$ fair agreement
   - $k < 0.67$ bad agreement

2. Note that the kappa statistic can be negative if the agreements between judgments are worse than random.

3. In case of large variations between judgments, one can choose an assessor as a gold-standard.
Table of contents

1 Introduction
2 Standard test collections
3 Evaluation for unranked retrieval
4 Evaluation for ranked retrieval
5 Assessing relevance
6 System quality and user utility
7 Reading
1. Ultimate interest: how satisfied is the user with the results the system gives for each of its information needs?

2. Evaluation criteria for an IR system:
   - fast indexing
   - fast searching
   - expressivity of the query language
   - size of the collection supported
   - user interface (clearness of the input form and of the output list, e.g. snippets, etc)
Quantifying user happiness?

- for www search engines: “do the users find the information they are looking for?” can be quantified by evaluating the proportion of users getting back to the engine.

- for intranet search engines: this efficiency can be evaluated by the time spent searching for a given piece of information.

- general case: user studies evaluating the adequacy of the search engine with the expected usage (eCommerce, etc)
Table of contents

1 Introduction
2 Standard test collections
3 Evaluation for unranked retrieval
4 Evaluation for ranked retrieval
5 Assessing relevance
6 System quality and user utility
7 Reading
Please read chapter 8 of Information Retrieval Book.