Homework 1 (Estimation theory)

1. Let X_1, \ldots, X_n be a random sample from a gamma (α, β) population. Find a two dimensional sufficient statistic for (α, β).

2. Suppose X_1, X_2, \ldots, X_n be iid with double exponential distribution. find a minimal sufficient statistic for θ.

$$f(x | \theta) = \frac{1}{2} e^{-|x-\theta|}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty$$

3. For each of the following pdfs let X_1, \ldots, X_n be iid observations. Find a complete sufficient statistic, or show that one does not exist.

 (a) $f(x | \theta) = \frac{2x}{\theta^2}, \quad 0 < x < \theta, \quad \theta > 0$

 (b) $f(x | \theta) = \frac{\theta}{(1+x)^{\frac{\theta}{\theta}+\theta}}, \quad 0 < x < \infty, \quad \theta > 0$

4. Suppose X_1, X_2, \ldots, X_n be iid with Uniform $(0, \theta)$. $\max X_i$ is a sufficient statistic for θ. Show that it is a complete sufficient statistic for θ.

5. Let X_1, \ldots, X_n be a random sample from a uniform distribution on the interval $(\theta, 1 + \theta)$ $\theta > 0$. Find a minimal sufficient statistic for θ. Is the statistic complete?

6. Let X_1, \ldots, X_n be a random sample from a population with pmf:

$$P_\theta(X = x) = \theta x (1 - \theta)^{1-x}, \quad x = 0 \text{ or } 1, \quad 0 \leq \theta \leq \frac{1}{2}$$

Find the method of moments estimator of θ^2.

7. Let X_1, \ldots, X_n be a random sample from the pdf:

$$f(x | \theta) = \theta x^{-2}, \quad 0 < \theta \leq x < \infty$$

find the MLE of θ.

1
8. Let X_1, \ldots, X_n be a sample from a population with double exponential:

$$f(x \mid \theta) = \frac{1}{2} e^{-|x-\theta|}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty$$

find the MLE of θ.

9. Let X_1, \ldots, X_n be a random sample from a Bernoulli (λ). let λ have a $\text{Beta}(\alpha, \beta)$ distribution. assume we are using mean squared loss. find the Bayes estimator of λ.

2