Interdomain Routing Security
Security of BGP

Behnam Momeni
Computer Engineering Department
Sharif University of Technology

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.
Security Goals for BGP

• Secure message exchange between neighbors
 – Confidential BGP message exchange
 – No denial of service

• Validity of the routing information
 – Origin authentication
 • Is the prefix owned by the AS announcing it?
 – AS path authentication
 • Is AS path the sequence of ASes the BGP update traversed?
 – AS path policy
 • Does the AS path adhere to the routing policies of each AS?

• Correspondence to the data path
 – Does the traffic follow the advertised AS path?
Validity of the routing information: Origin authentication
IP Address Ownership and Hijacking

- **IP address block assignment**
 - Regional Internet Registries (ARIN, RIPE, APNIC)
 - Internet Service Providers

- **Proper origination of a prefix into BGP**
 - By the AS who owns the prefix
 - … or, by its upstream provider(s) in its behalf

- **However, what’s to stop someone else?**
 - Prefix hijacking: another AS originates the prefix
 - BGP does not verify that the AS is authorized
 - Registries of prefix ownership are inaccurate
Prefix Hijacking

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations
Hijacking is Hard to Debug

• Real origin AS doesn’t see the problem
 – Picks its own route
 – Might not even learn the bogus route

• May not cause loss of connectivity
 – E.g., if the bogus AS snoops and redirects
 – ... may only cause performance degradation

• Or, loss of connectivity is isolated
 – E.g., only for sources in parts of the Internet

• Diagnosing prefix hijacking
 – Analyzing updates from many vantage points
 – Launching traceroute from many vantage points
Sub-Prefix Hijacking

- Originating a more-specific prefix
 - Every AS picks the bogus route for that prefix
 - Traffic follows the longest matching prefix

12.34.158.0/24
12.34.0.0/16
How to Hijack a Prefix

• The hijacking AS has
 – Router with eBGP session(s)
 – Configured to originate the prefix

• Getting access to the router
 – Network operator makes configuration mistake
 – Disgruntled operator launches an attack
 – Outsider breaks in to the router and reconfigures

• Getting other ASes to believe bogus route
 – Neighbor ASes not filtering the routes
 – … e.g., by allowing only expected prefixes
 – But, specifying filters on peering links is hard
The February 24 YouTube Outage

• YouTube (AS 36561)
 – Web site www.youtube.com
 – Address block 208.65.152.0/22

• Pakistan Telecom (AS 17557)
 – Receives government order to block access to YouTube
 – Starts announcing 208.65.153.0/24 to PCCW (AS 3491)
 – All packets directed to YouTube get dropped on the floor

• Mistakes were made
 – AS 17557: announcing to everyone, not just customers
 – AS 3491: not filtering routes announced by AS 17557

• Lasted 100 minutes for some, 2 hours for others
Timeline (UTC Time)

• 18:47:45
 – First evidence of hijacked /24 route propagating in Asia

• 18:48:00
 – Several big trans-Pacific providers carrying the route

• 18:49:30
 – Bogus route fully propagated

• 20:07:25
 – YouTube starts advertising the /24 to attract traffic back

• 20:08:30
 – Many (but not all) providers are using the valid route

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
Timeline (UTC Time)

• 20:18:43
 – YouTube starts announcing two more-specific /25 routes

• 20:19:37
 – Some more providers start using the /25 routes

• 20:50:59
 – AS 17557 starts prepending (“3491 17557 17557”)

• 20:59:39
 – AS 3491 disconnects AS 17557

• 21:00:00
 – All is well, videos of cats doing funny things are available

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
Another Example: Spammers

• Spammers sending spam
 – Form a (bidirectional) TCP connection to a mail server
 – Send a bunch of spam e-mail
 – Disconnect and laugh all the way to the bank

• But, best not to use your real IP address
 – Relatively easy to trace back to you

• Could hijack someone’s address space
 – But you might not receive all the (TCP) return traffic
 – And the legitimate owner of the address might notice

• How to evade detection
 – Hijack unused (i.e., unallocated) address block in BGP
 – Temporarily use the IP addresses to send your spam
BGP AS Path
Bogus AS Paths

• Remove ASes from the AS path
 – E.g., turn “701 3715 88” into “701 88”

• Motivations
 – Make the AS path look shorter than it is
 – Attract sources that normally try to avoid AS 3715
 – Help AS 88 look like it is closer to the Internet’s core

• Who can tell that this AS path is a lie?
 – Maybe AS 88 *does* connect to AS 701 directly
Bogus AS Paths

• Add ASes to the path
 – E.g., turn “701 88” into “701 3715 88”

• Motivations
 – Trigger loop detection in AS 3715
 • Denial-of-service attack on AS 3715
 • Or, blocking unwanted traffic coming from AS 3715!
 – Make your AS look like it has richer connectivity

• Who can tell the AS path is a lie?
 – AS 3715 could, if it could see the route
 – AS 88 could, but would it really care as long as it received data traffic meant for it?
Bogus AS Paths

• Adds AS hop(s) at the end of the path
 – E.g., turns “701 88” into “701 88 3”

• Motivations
 – Evade detection for a bogus route
 – E.g., by adding the legitimate AS to the end

• Hard to tell that the AS path is bogus…
 – Even if other ASes filter based on prefix ownership
Invalid Paths

- AS exports a route it shouldn’t
 - AS path is a valid sequence, but violated policy
- Example: customer misconfiguration
 - Exports routes from one provider to another
- … interacts with provider policy
 - Provider prefers customer routes
 - … so picks these as the best route
- … leading the dire consequences
 - Directing all Internet traffic through customer
- Main defense
 - Filtering routes based on prefixes and AS path
Missing/Inconsistent Routes

• Peers require consistent export
 – Prefix advertised at all peering points
 – Prefix advertised with same AS path length

• Reasons for violating the policy
 – Trick neighbor into “cold potato”
 – Configuration mistake

• Main defense
 – Analyzing BGP updates
 – … or data traffic
 – …. for signs of inconsistency
BGP Security Today

• Applying best common practices (BCPs)
 – Filtering routes by prefix and AS path
 – Packet filters to block unexpected control traffic

• This is not good enough
 – Depends on vigilant application of BCPs
 • … and not making configuration mistakes!
 – Doesn’t address fundamental problems
 • Can’t tell who owns the IP address block
 • Can’t tell if the AS path is bogus or invalid
 • Can’t be sure the data packets follow the chosen route
Proposed Enhancements to BGP
S-BGP Secure Version of BGP

• **Address attestations**
 – Claim the right to originate a prefix
 – Signed and distributed out-of-band
 – Checked through delegation chain from ICANN

• **Route attestations**
 – Distributed as an attribute in BGP update message
 – Signed by each AS as route traverses the network
 – Signature signs previously attached signatures

• **S-BGP can validate**
 – AS path indicates the order ASes were traversed
 – No intermediate ASes were added or removed
S-BGP Deployment Challenges

• Complete, accurate registries
 – E.g., of prefix ownership

• Public Key Infrastructure
 – To know the public key for any given AS

• Cryptographic operations
 – E.g., digital signatures on BGP messages

• Need to perform operations quickly
 – To avoid delaying response to routing changes

• Difficulty of incremental deployment
 – Hard to have a “flag day” to deploy S-BGP
Incrementally Deployable Schemes

- **Monitoring BGP update messages**
 - Use past history as an implicit registry
 - E.g., AS that announces each address block
 - E.g., AS-level edges and paths

- **Out-of-band detection mechanism**
 - Generate reports and alerts
 - Internet Alert Registry: http://www.cs.unm.edu/~karlinjf/IAR/
 - Prefix Hijack Alert System: https://www.usenix.org/legacy/events/sec06/tech/full_papers/lad/lad_html/index.html

- **Soft response to suspicious routes**
 - Prefer routes that agree with the past
 - Delay adoption of unfamiliar routes when possible
 - Some (e.g., misconfiguration) will disappear on their own
What About Packet Forwarding?
Control Plane Vs. Data Plane

• Control plane
 – BGP is a routing protocol
 – BGP security concerns validity of routing messages
 – I.e., did the BGP message follow the sequence of ASes listed in the AS-path attribute

• Data plane
 – Routers forward data packets
 – Supposedly along the path chosen in the control plane
 – But what ensures that this is true?
Data-Plane Attacks, Part 1

• **Drop packets in the data plane**
 – While still sending the routing announcements

• **Easier to evade detection**
 – Especially if you only drop some packets
 – Like, oh, say, BitTorrent or Skype traffic

• **Even easier if you just slow down some traffic**
 – How different are normal congestion and an attack?
 – Especially if you let ping/traceroute packets through?
Data-Plane Attacks, Part 2

• Send packets in a different direction
 – Disagreeing with the routing announcements

• Direct packets to a different destination
 – E.g., one the adversary controls

• What to do at that bogus destination?
 – Impersonate the legitimate destination (e.g., to perform identity theft, or promulgate false information)
 – Snoop on the traffic and forward along to real destination

• How to detect?
 – Traceroute? Longer than usual delays?
 – End-to-end checks, like site certificate or encryption?
Fortunately, Data-Plane Attacks are Harder

- Adversary must control a router along the path
 - So that the traffic flows through him

- How to get control a router
 - Buy access to a compromised router online
 - Guess the password
 - Exploit known router vulnerabilities
 - Insider attack (disgruntled network operator)

- Malice vs. greed
 - Malice: gain control of someone else’s router
 - Greed: Verizon DSL blocks Skype to gently encourage me to pick up my landline phone to use Verizon long distance service 😊
What’s the Internet to Do?
BGP is So Vulnerable

- **Several high-profile outages**
 - http://merit.edu/mail.archives/nanog/1997-04/msg00380.html
 - http://research.dyn.com/2008/02/pakistan-hijacks-youtube-1/

- **Many smaller examples**
 - Blackholing a single destination prefix
 - Hijacking unallocated addresses to send spam

- **Why isn’t it an even bigger deal?**
 - Really, most big outages are configuration errors
 - Most bad guys want the Internet to stay up
 - ... so they can send unwanted traffic (e.g., spam, identity theft, denial-of-service attacks, port scans)
BGP is So Hard to Fix

• Complex system
 – Large, with around 30,000 ASes
 – Decentralized control among competitive ASes
 – Core infrastructure that forms the Internet

• Hard to reach agreement on the right solution
 – S-BGP with public key infrastructure, registries, crypto?
 – Who should be in charge of running PKI and registries?
 – Worry about data-plane attacks or just control plane?

• Hard to deploy the solution once you pick it
 – Hard enough to get ASes to apply route filters
 – Now you want them to upgrade to a new protocol
 – … all at the exact same moment?
Conclusions

• Internet protocols designed based on trust
 – The insiders are good guys
 – All bad guys are outside the network

• Border Gateway Protocol is very vulnerable
 – Glue that holds the Internet together
 – Hard for an AS to locally identify bogus routes
 – Attacks can have very serious global consequences

• Proposed solutions/approaches
 – Secure variants of the Border Gateway Protocol
 – Anomaly detection schemes, with automated response
 – Broader focus on data-plane availability