Circuit Switching

Behnam Momeni
Computer Engineering Department
Sharif University of Technology

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.
Circuit Switching
Circuit Switching (e.g., Phone Network)

- **Establish**: source creates circuit to destination
 - Node along the path store connection info
 - Nodes may reserve resources for the connection

- **Transfer**: source sends data over the circuit
 - No destination address, since nodes know path

- **Teardown**: source tears down circuit when done
Timing in Circuit Switching

Host 1 — Switch 1 — Switch 2 — Host 2

- **Circuit Establishment**
- **Transfer**
- **Circuit Teardown**

- Transmission delay

- Propagation delay between Host 1 and Switch 1
- Propagation delay between Host 1 and Host 2

Information

time
Circuit Switching With Human Operator
Circuit Switching: Multiplexing a Link

• Time-division
 – Each circuit allocated certain time slots

• Frequency-division
 – Each circuit allocated certain frequencies
Advantages of Circuit Switching

• Guaranteed bandwidth
 – Predictable communication performance
 – Not “best-effort” delivery with no real guarantees

• Simple abstraction
 – Reliable communication channel between hosts
 – No worries about lost or out-of-order packets

• Simple forwarding
 – Forwarding based on time slot or frequency
 – No need to inspect a packet header

• Low per-packet overhead
 – Forwarding based on time slot or frequency
 – No IP (and TCP/UDP) header on each packet
Disadvantages of Circuit Switching

• Wasted bandwidth
 – Bursty traffic leads to idle connection during silent period
 – Unable to achieve gains from statistical multiplexing

• Blocked connections
 – Connection refused when resources are not sufficient
 – Unable to offer “okay” service to everybody

• Connection set-up delay
 – No communication until the connection is set up
 – Unable to avoid extra latency for small data transfers

• Network state
 – Network nodes must store per-connection information
 – Unable to avoid per-connection storage and state
Virtual Circuits
Virtual Circuit (VC)

- Hybrid of packets and circuits
 - Circuits: establish and teardown along end-to-end path
 - Packets: divide the data into packets with identifiers

- Packets carry a virtual-circuit identifier
 - Associates each packet with the virtual circuit
 - Determines the next link along the path

- Intermediate nodes maintain state VC
 - Forwarding table entry
 - Allocated resources
Establishing the Circuit

• **Signaling**
 – Creating the entries in the forwarding tables
 – Reserving resources for the virtual circuit, if needed

• **Two main approaches to signaling**
 – Network administrator configures each node
 – Source sends set-up message along the path

• **Set-up latency**
 – Time for the set-up message to traverse the path
 – … and return back to the source

• **Routing**
 – End-to-end path is selected during circuit set-up
Virtual Circuit Identifier (VC ID)

- Virtual Circuit Identifier (VC ID)
- Source set-up: establish path for the VC
- Switch: mapping VC ID to an outgoing link
- Packet: fixed length label in the header
Swapping the Label at Each Hop

- Problem: using VC ID along the whole path
 - Each virtual circuit consumes a unique ID
 - Starts to use up all of the ID space in the network

- Label swapping
 - Map the VC ID to a new value at each hop
 - Table has old ID, and next link and new ID
Virtual Circuits Similar to IP Datagrams

- **Data divided into packets**
 - Sender divides the data into packets
 - Packet has address (e.g., IP address or VC ID)

- **Store-and-forward transmission**
 - Multiple packets may arrive at once
 - Need buffer space for temporary storage

- **Multiplexing on a link**
 - No reservations: statistical multiplexing
 - Packets are interleaved without a fixed pattern
 - Reservations: resources for group of packets
 - Guarantees to get a certain number of “slots”
Virtual Circuits Differ from IP Datagrams

- **Forwarding look-up**
 - Virtual circuits: fixed-length connection id
 - IP datagrams: destination IP address

- **Initiating data transmission**
 - Virtual circuits: must signal along the path
 - IP datagrams: just start sending packets

- **Router state**
 - Virtual circuits: routers know about connections
 - IP datagrams: no state, easier failure recovery

- **Quality of service**
 - Virtual circuits: resources and scheduling per VC
 - IP datagrams: difficult to provide QoS
Quality of Service (QoS) on Virtual Circuits
Quality of Service

• Allocating resources to the virtual circuit
 – E.g., guaranteed bandwidth on each link in the path
 – E.g., guaranteeing a maximum delay along the path

• Admission control
 – Check during signaling that the resources are available
 – Saying “no” if they are not, and reserving them if they are

• Resource scheduling
 – Apply scheduling algorithms during the data transfer
 – To ensure that the performance guarantees are met
Admission Control

• Source sends a reservation message
 – E.g., “this virtual circuit needs 5 Mbps”

• Each switch along the path
 – Keeps track of the reserved resources
 • E.g., “the link has 6 Mbps left”
 – Checks if enough resources remain
 • E.g., “6 Mbps > 5 Mbps, so circuit can be accepted”
 – Creates state for circuit and reserves resources
 • E.g., “now only 1 Mbps is available”
Admission Control: Flowspec

- Flowspec: information about the traffic
 - The traffic characteristics of the flow
 - The service requested from the network

- Specifying the traffic characteristics
 - Simplest case: constant bit rate (some # of bits per sec)
 - Yet, many applications have variable bit rates
 - … and will send more than their average bit rate
Specifying Bursty Traffic

• Option #1: Specify the maximum bit rate
 – Maximum bit rate may be much higher average
 – Reserving for the worst case is wasteful

• Option #2: Specify the average bit rate
 – Average bit rate is not sufficient
 – Network will not be able to carry all of the packets
 – Reserving for average case leads to bad performance

• Option #3: Specify the burstiness of the traffic
 – Specify both the average rate and the burst size
 – Allows the sender to transmit bursty traffic
 – … and the network to reserve the necessary resources
Token Bucket Traffic Model

- **Parameterized Traffic Specification**
 - Token Rate \((r) \)
 - Bucket Depth \((d) \)
- **Each unit of data consumes a token to be sent**
 - Average traffic rate: \(r \)
 - Bursty traffic volume: \(d \)
 - Divide traffic to conforming and excessive traffics
 - Suitable for both traffic policing and traffic shaping
 - **Traffic Policing:** Excessive packets are dropped,
 - **Traffic Shaping:** Excessive packets are delayed to conform.
Token Bucket Traffic Model
Leaky Bucket Traffic Model

- **Parameterized Traffic Specification**
 - Token Leakage Rate \((r)\)
 - Bucket Depth \((d)\)
- **Each unit of data fills the bucket as much as one token**
- **Tokens leak with a fixed rate to empty space for new data**
 - Average traffic rate: \(r\)
 - Bursty traffic volume: \(d\)
 - Suitable for traffic shaping
 - In one variation, bucket is similar to a queue which holds traffic and sends it with leakage rate
 - Excessive data is dropped
 - Output rate is always equal or less than \(r\)
Leaky Bucket Traffic Model
Service Requested From the Network

• Variety of service models
 – Bandwidth guarantee (e.g., 5 Mbps)
 – Delay guarantee (e.g., no more than 100 msec)
 – Loss rate (e.g., no more than 1% packet loss)

• Signaling during admission control
 – Translate end-to-end requirement into per-hop
 – Easy for bandwidth (e.g., 5 Mbps on each hop)
 – Harder for delay and loss
 – … since each hop contributes to the delay and loss

• Per-hop admission control
 – Router takes the service requirement and traffic spec
 – … and determines whether it can accept the circuit
Ensuring the Source Behaves

• Guarantees depend on the source behaving
 – Extra traffic might overload one or more links
 – Leading to congestion, and resulting delay and loss
 – Solution: need to enforce the traffic specification

• Solution #1: policing
 – Drop all data in excess of the traffic specification

• Solution #2: shaping
 – Delay the data until it obeys the traffic specification

• Solution #3: marking
 – Mark all data in excess of the traffic specification
 – … and give these packets lower priority in the network
Enforcing Behavior

- Applying a leaky bucket to the traffic
 - Simulating a leaky bucket \((r, d)\) at the edge
 - Discarding, delaying, or marking packets accordingly

- Ensures that the incoming traffic obeys the profile
 - So that the network can provide the guarantees

- Technical challenge
 - Applying leaky buckets for many flows at a high rate
Link Scheduling: FIFO

• First-in first-out scheduling
 – Simple to implement
 – But, restrictive in providing guarantees

• Example: two kinds of traffic
 – Video conferencing needs high bandwidth and low delay
 • E.g., 1 Mbps and 100 msec delay
 – E-mail transfers are not that sensitive about delay

• Cannot admit much e-mail traffic
 – Since it will interfere with the video conference traffic
Link Scheduling: Strict Priority

• **Strict priority**
 – Multiple levels of priority
 – Always transmit high-priority traffic, when present
 – .. and force the lower priority traffic to wait

• **Isolation for the high-priority traffic**
 – Almost like it has a dedicated link
 – Except for the (small) delay for packet transmission
 • High-priority packet arrives during transmission of low-priority
 • Router completes sending the low-priority traffic first
Link Scheduling: Weighted Fairness

• Limitations of strict priority
 – Lower priority queues may starve for long periods
 – … even if the high-priority traffic can afford to wait

• Weighted fair scheduling
 – Assign each queue a fraction of the link bandwidth
 – Rotate across the queues on a small time scale
 – Send extra traffic from one queue if others are idle

50% red, 25% blue, 25% green
Link Schedulers: Trade-Offs

• Implementation complexity
 – FIFO is easy
 • One queue, trivial scheduler
 – Strict priority is a little harder
 • One queue per priority level, simple scheduler
 – Weighted fair scheduling
 • One queue per virtual circuit, and more complex scheduler

• Admission control
 – Using more sophisticated schedulers can allow the router to admit more virtual circuits into the network
 – Getting close to making full use of the network resources
 – E.g., FIFO requires very conservative admission control
Routing in Virtual Circuit Networks

• Routing decisions take place at circuit set-up
 – Resource reservations made along end-to-end path
 – Data packets flow along the already-chosen path

• Simplest case: routing based only on the topology
 – Routing based on the topology and static link weights
 – Source picks the end-to-end path, and signals along it
 – If the path lacks sufficient resources, that’s too bad!
Quality-of-Service Routing

• QoS routing: source selects the path intelligently
 – Tries to find a path that can satisfy the requirements

• Traffic performance requirement
 – Guaranteed bandwidth b per connection

• Link resource reservation
 – Reserved bandwidth r_i on link i
 – Capacity c_i on link i

• Signaling: admission control on path P
 – Reserve bandwidth b on each link i on path P
 – Block: if $(r_i + b > c_i)$ then reject (or try again)
 – Accept: else $r_i = r_i + b$
Source-Directed QoS Routing

- New connection with $b = 3$
 - Routing: select path with available resources
 - Signaling: reserve bandwidth along the path ($r = r + 3$)
 - Forward data packets along the selected path
 - Teardown: free the link bandwidth ($r = r - 3$)
QoS Routing: Link-State Advertisements

• Advertise available resources per link
 – E.g., advertise available bandwidth \((c_i - r_i)\) on link \(i\)
 – Every \(T\) seconds, independent of changes
 – … or, when the metric changes beyond threshold

• Each router constructs view of topology
 – Topology including the latest link metrics

• Each router computes the paths
 – Looks at the requirements of the connection
 – … as well as the available resources in the network
 – And selects a path that satisfies the needs

• Then, the router signals to set up the path
 – With a high likelihood that the request is accepted
Virtual Circuit Realizations

- **Asynchronous Transfer Mode (ATM)**
 - Small and fixed sized packets (53 bytes)
 - IP packets can be fragmented in **ATM cells** and reassembled later
 - ATM switches (layers 1, 2, and 3) / Preferred to work end-to-end
 - Virtual Paths (VP)

- **Frame Relay**
 - Designed for the context of ISDN networks (layers 1 and 2)
 - Permanent Virtual Circuit (PVC)
 - Switched Virtual Circuit (SVC)

- **Synchronous Optical Networking (SONET)**
 - Can be used to carry ATM cells (layer 1)
 - Virtual Container (VC)
Inferring the Need for a Virtual Circuit

• Which IP packets go on a virtual circuit?
 – All packets in the same TCP or UDP transfer?
 – All packets between same pair of end hosts?
 – All packets between same pair of IP subnets?

• Edge router can infer the need for a circuit
 – Match on packet header bits
 • E.g., source, destination, port numbers, etc.
 – Apply policy for picking bandwidth parameters
 • E.g., Web traffic get 10 Kbps, video gets 2 Mbps
 – Trigger establishment of circuit for the traffic
 • Select path based on load and requirements
 • Signal creation of the circuit
 • Tear down circuit after an idle period
Grouping IP Packets Into Flows

- Group packets with the “same” end points
 - Application level: single TCP connection
 - Host level: single source-destination pair
 - Subnet level: single source prefix and dest prefix

- Group packets that are close together in time
 - E.g., 60-sec spacing between consecutive packets
Challenges for IP Over ATM

• Many IP flows are short
 – Most Web transfers are less than 10 packets
 – Is it worthwhile to set up a circuit?

• Subdividing an IP packet into cells
 – Wasted space if packet is not multiples of 48 bytes

• Difficult to know what resources to reserve
 – Internet applications don’t specify traffic or QoS

• Two separate addressing schemes
 – IP addresses and ATM end-points

• Complexity of two sets of protocols
 – Supporting both IP and ATM protocols
ATM Today

• Still used in some contexts
 – Some backbones and edge networks
 – But, typically the circuits are not all that dynamic
 – E.g., ATM circuit used as a link for aggregated traffic

• Some key ideas applicable to other technologies
 – Huge body of work on quality of service
 – Idea of virtual circuits (becoming common now in MultiProtocol Label Switching)
Differentiated Services
Differentiated Services in IP

- Compromise solution for QoS
 - Not as strong guarantees as per-circuit solutions
 - Not as simple as best-effort service

- Allocate resources for classes of traffic
 - Gold, silver, and bronze

- Scheduling resources based on ToS bits
 - Put packets in separate queues based on ToS bits

- Packet classifiers to set the ToS bits
 - Mark the “Type of Service” bits in the IP packet header
 - Based on classification rules at the network edge
Example Packet Classifier

• Gold traffic
 – All traffic to/from John Adam’s IP address
 – All traffic to/from the port number for DNS

• Silver traffic
 – All traffic to/from academic and administrative buildings

• Bronze traffic
 – All traffic on the public wireless network

• Then, schedule resources accordingly
 – E.g., 50% for gold, 30% for silver, and 20% for bronze
Real Guarantees?

- It depends…
 - Must limit volume of traffic that can be classified as gold
 - E.g., by marking traffic “bronze” by default
 - E.g., by policing traffic at the edge of the network

- QoS through network management
 - Configuring packet classifiers
 - Configuring policers
 - Configuring link schedulers

- Rather than through dynamic circuit set-up
Example Uses of QoS Today

• Virtual Private Networks
 – Corporate networks interconnecting via the Internet
 – E.g., IBM sites throughout the world on AT&T backbone
 – Carrying VPN traffic in “gold” queue protects the QoS
 – Limiting the amount of gold traffic avoids overloads
 – Especially useful on the edge link to/from customer

• Routing-protocol traffic
 – Routing protocol messages are “in band”
 – So, routing messages may suffer from congestion
 – Carrying routing messages in the “gold” queue helps

• Challenge: end-to-end QoS across domains… 😞