Chapter. 02: Modeling

2.9 Structured Text Models
Keyword-based query answering considers that the documents are flat i.e., a word in the title has the same weight as a word in the body of the document.

But, the document structure is one additional piece of information which can be taken advantage of.

For instance, words appearing in the title or in sub-titles within the document could receive higher...
Consider the following information need:

- Retrieve all documents which contain a page in which the string “atomic holocaust” appears in italic in the text surrounding a Figure whose label contains the word earth
- The corresponding query could be:

 same-page(near(“atomic holocaust”, Figure(label(“earth”)))
Introduction

- Advanced interfaces that facilitate the specification of the structure are also highly desirable.
- Models which allow combining information on text content with information on document structure are called *structured text models*.
- Structured text models include no ranking (open research problem).
Basic Definitions

- **Match point**: the position in the text of a sequence of words that match the query
 - Query: “atomic holocaust in Hiroshima”
 - Doc dj: contains 3 lines with this string
 - Then, doc dj contains 3 match points

- **Region**: a contiguous portion of the text

- **Node**: a structural component of the text such as a chapter, a section, etc.
Non-Overlapping Lists

- Due to Burkowski, 1992.
- Idea: divide the text in non-overlapping regions which are collected in a list.
- Multiple ways to divide the text in non-overlapping parts yield multiple lists:
 - a list for chapters
 - a list for sections
 - a list for subsections
- Text regions from distinct lists might overlap.
Non-Overlapping Lists
Non-Overlapping Lists

Implementation:
- single inverted file that combines keywords and text regions
- to each entry in this inverted file is associated a list of text regions
- lists of text regions can be merged with lists of keywords
Non-Overlapping Lists

- Regions are non-overlapping which limits the queries that can be asked

- Types of queries:
 - select a region that contains a given word
 - select a region A that does not contain a region B (regions A and B belong to distinct lists)
 - select a region not contained within any other region
Conclusions

- The non-overlapping lists model is simple and allows efficient implementation.
- But, types of queries that can be asked are limited.
- Also, model does not include any provision for ranking the documents by degree of similarity to the query.
- What does structural similarity mean?
Proximal Nodes

- Due to Navarro and Baeza-Yates, 1997
- Idea: define a strict hierarchical index over the text. This enriches the previous model that used flat lists.
- Multiple index hierarchies might be defined
- Two distinct index hierarchies might refer to text regions that overlap
Definitions

- Each indexing structure is a strict hierarchy composed of:
 - chapters
 - sections
 - subsections
 - paragraphs
 - lines
- Each of these components is called a node
- To each node is associated a text region
Proximal Nodes

Key points:
- In the hierarchical index, one node might be contained within another node.
- But, two nodes of a same hierarchy cannot overlap.
- The inverted list for keywords complements the hierarchical index.
- The implementation here is more complex than that for non-overlapping lists.
Proximal Nodes

- Queries are now regular expressions:
 - search for strings
 - references to structural components
 - combination of these

- Model is a compromise between expressiveness and efficiency

- Queries are simple but can be processed efficiently

- Further, model is more expressive than non-overlapping lists
Proximal Nodes

Query: find the sections, the subsections, and the subsubsections that contain the word “holocaust”

\[(*\text{section}) \text{ with } (\text{“holocaust”})\]

Simple query processing:

- traverse the inverted list for “holocaust” and determine all match points
- use the match points to search in the hierarchical index for the structural components
Proximal Nodes

- Query: \[(*\text{section}) \text{ with} \ (\text{“holocaust”})\]
- Sophisticated query processing:
 - get the first entry in the inverted list for “holocaust”
 - use this match point to search in the hierarchical index for the structural components
 - Innermost matching component: smaller one
 - Check if innermost matching component includes the second entry in the inverted list for “holocaust”
 - If it does, check the third entry and so on
 - This allows matching efficiently the nearby (or proximal) nodes
Conclusions

- Model allows formulating queries that are more sophisticated than those allowed by non-overlapping lists.
- To speed up query processing, nearby nodes are inspected.
- Types of queries that can be asked are somewhat limited (all nodes in the answer must come from a same index hierarchy!)
- Model is a compromise between efficiency and expressiveness.