Directed Graphical Models: Bayesian Networks

40-957 Special Topics in Artificial Intelligence: Probabilistic Graphical Models
Sharif University of Technology

Soleymani
Spring 2015
Basics

- Multivariate distributions with large number of variables
- Independencies assumptions are useful
 - Independence and conditional independence relationships simplify representation and alleviate inference complexities
- Bayesian networks enables us to incorporate domain knowledge and structures
 - Modular combination of heterogeneous parts
 - Combining data and knowledge (Bayesian philosophy)
Conditional and marginal independence

- *X* and *Y* are **conditionally independent** given *Z* if:

 \[X \perp Y | Z \]
 \[P(X, Y | Z) = P(X | Z)P(Y | Z) \]
 \[\forall x \in Val(X), y \in Val(Y), z \in Val(Z) \]
 \[P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z) \]

- *X* and *Y* are **marginal independent** if:

 \[X \perp Y | \emptyset \]
 \[P(X, Y) = P(X)P(Y) \]
Bayesian network definition

- **Bayesian Network**
 - Qualitative specification by a **Directed Acyclic Graph (DAG)**
 - Each node denotes a random variable
 - Edges denote dependencies
 - $X \rightarrow Y$ shows a "direct influence" of X on Y (X is a parent of Y)
 - Quantitative specification by CPDs
 - CPD for each node X_i defines $P(X_i \mid Pa(X_i))$

- Bayesian Network represents a joint distribution over variables (via DAG and CPDs) compactly in a factorized way:

$$ P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid Pa(X_i)) $$
Burglary example

John do not perceive burglaries directly

John do not perceive minor earthquakes
Burglary example

- Bayesian networks define joint distribution (over the variables) in terms of the graph structure and conditional probability distributions

\[
P(B, E, A, J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)
\]
Burglary example: DAG + CPTs

Burglary: \(P(B) = .001 \)

Earthquake: \(P(E) = .002 \)

Short-hands:

- \(j \): JohnCalls = True
- \(b \): Burglary = False

\[
P(j | A) = \begin{cases}
 .90 & \text{if } A = t \\
 .05 & \text{if } A = f
\end{cases}
\]

\[
P(m | A) = \begin{cases}
 .70 & \text{if } A = t \\
 .01 & \text{if } A = f
\end{cases}
\]

CPDs as quantitative specification:

| \(B \) | \(E \) | \(P(a | B, E) \) |
|---|---|---|
| t | t | .95 |
| t | f | .94 |
| f | t | .29 |
| f | f | .001 |

…
Burglary example: full joint probability

\[P(J, M, A, B, E) = P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E) \]

\[P(j, m, a, b, \bar{e}) = P(j \mid a) P(m \mid a) P(a \mid b, \bar{e}) P(\bar{b}) P(\bar{e}) \]

\[= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 = 0.000628 \]
Burglary example: inference

- Partial joint probability distribution: Joint probability distribution for a subset variables
 \[P(J, M, B) = \sum_A \sum_E P(J, M, A, B, E) \]

- Conditional probability distribution:
 \[P(B|J = t, M = f) = \frac{P(J=t, M=f, B)}{P(J=t, M=f)} = \frac{\sum_A \sum_E P(J=t, M=f, A, B, E)}{\sum_B \sum_A \sum_E P(J=t, M=f, A, B, E)} \]
Student example

\[
P(I = 0.55)
\]

Intelligence

Difficulty

Rank

Grade

Letter

\[
P(D = 0.65)
\]

| \(I\) | \(P(R = 1|I)\) | \(P(G|I, D)\) |
|------|----------------|----------------|
| \(f\) | 0.1 | \(G = 1\) |
| \(t\) | 0.7 | \(G = 2\) |
| \(t\) | 0.5 | \(G = 3\) |

\[
G | \(P(L = t|G)\)
---|----------------|
1 | 0.9
2 | 0.5
3 | 0.05
\]
Compact representation

- A CPT for a Boolean variable with k Boolean parents requires:
 - 2^k rows: different combinations of parent values
 - $k = 0$: one row showing the prior probability

- If each variable has no more than k parents
 - **Full joint distribution** requires $2^n - 1$ numbers
 - **Bayesian network** requires atmost $n \times 2^k - 1$ numbers (linear with n)
 - \Rightarrow Exponential reduction in number of parameters
Continuous variables example

- Linear Gaussian

\[X \sim N(0, 1) \]
\[Y | X \sim N(b + X, \sigma) \]

\[b = 0.5 \]
\[\sigma = 0.1 \]
Bayesian network semantics

- **Local independencies:**
 - Each node is conditionally independent of its non-descendants given its parents

\[
X_i \perp \text{Non_Descendants}(X_i) | Pa(X_i)
\]

- Are local independencies all of the conditional independencies implied by a BN?
Factorization & independence

- Let G be a graph over X_1, \ldots, X_n, distribution P factorizes over G if:

 $$P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i | Pa(X_i))$$

- Factorization \Rightarrow Independence
 - If P factorizes over G, then any variable in P is independent of its non-descendants given its parents (in G)
 - Factorization according to G implies the associated conditional independencies.

- Independence \Rightarrow Factorization
 - If any variable in the distribution P is independent of its non-descendants given its parents (in the graph G) then P factorizes over G
 - Conditional independencies imply factorization of the joint distribution (into a product of simpler terms)
Independence \Rightarrow factorization

- Consider the chain rule:

$$P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1})$$

- We can simplify it through conditional independencies assumptions
 - $P(X_i|X_1, X_2, \ldots, X_{i-1}) = P(X_i|\text{Parents}(X_i))$ can be showed using $X_i \perp \text{Non.Descendants}(X_i)|\text{Pa}(X_i)$
Equivalence Theorem

For a graph G:
- Let D_1 denote the family of all distributions that satisfy conditional independencies of G
- Let D_2 denote the family of all distributions that factor according to G
- $\Rightarrow D_1 \equiv D_2$.
Other independencies

- Are there other independences that hold for every distribution P that factorizes over G?

- According to the graphical criterion called D-separation, we can find independencies from the graph:
 - If P factorizes over G, can we read these independencies from the structure of G?
Basic structures

- $X \perp Y | Z$
- $X \perp Y | Z$
- $X \perp Y$

Explaining away
Let A, B, C denote three disjoint sets of nodes, A is **d-separated** from B by C iff $A \perp B | C$

A is **d-separated** from B by C if all undirected paths between A and B are **blocked** by C.
Undirected path blocking

- Head-to-tail at a node $Z \in C$

 ![Diagram of head-to-tail at a node $Z \in C$]

 $X \in A$ $Z \in C$ $Y \in B$

- Tail-to-tail at a node $Z \in C$

 ![Diagram of tail-to-tail at a node $Z \in C$]

 $X \in A$ $Z \in C$ $Y \in B$

- Head-to-head (i.e., v-structure) at a node Z ($Z \notin C$ & none of its descendants are in C)

 ![Diagram of head-to-head at a node Z ($Z \notin C$ & none of its descendants are in C)]

 $X \in A$ $Y \in B$
Undirected path blocking

In all trails (undirected paths) between A and B:

- A node in the path is in C where the path at the node do not meet head-to-head.
- Or a head-to-head node in the path, and neither the node, nor any of its descendants, is in C.
D-separation: active trail view

- **Definition:** \(X\) and \(Y\) are d-separated in \(G\) given \(Z\) if there is no active trail in \(G\) between \(X\) and \(Y\) given \(Z\).

- A trail between \(X\) and \(Y\) is **active**:
 - for any v-structure node \(U\) in the trail \(X \rightarrow U \leftarrow \cdots Y\), neither \(U\) nor any of its descendants are in \(Z\).
 - other nodes in this trail are not in \(Z\).
D-separation: example

- Intelligence
- Difficulty
- Rank
- Grade
- Letter

\[
\begin{align*}
R \perp G | I \\
R \perp D | I \\
R \perp D | G & \times \\
R \perp D | L & \times \\
R \perp L | G \\
D \perp L | G
\end{align*}
\]
Markov Blanket in Bayesian Network

- A variable is conditionally independent of all other variables given its Markov blanket

- Markov blanket of a node:
 - All parents
 - Children
 - Co-parents of children
D-Separation: soundness & completeness

- **Soundness**: Any conditional independence properties we can derive from \(G \) should hold for the probability distribution that factorize over \(G \)
 - **Theorem**: If \(P \) factorizes over \(G \), and \(d\text{-sep}_G(X,Y|Z) \) then \(P \) satisfies \(X \perp Y|Z \)

- **Weak completeness**:
 - For almost all distributions \(P \) that factorize over \(G \), if \(X \perp Y|Z \) is in \(P \) then \(X \) and \(Y \) are d-separated given \(Z \) in the graph \(G \)
 - There can be independencies in \(P \) that are not in conditional independence properties of \(G \)
I-map

- \(I(G) = \{(X \perp Y|Z) : \text{d-sep}_G(X, Y|Z)\} \)

- **Definition:** If \(P \) satisfies \(I(G) \), we say that \(G \) is an I-map (independencies map) of \(P \)
 - \(I(G) \subseteq I(P) \) where \(I(P) = \{(X \perp Y|Z) : P \models (X, Y|Z)\} \)

\(I(P) \): All conditional independence relations satisfied in \(P \)
Minimal I-map

- When more independence relations exist in the graph
 - \Rightarrow sparser representation (fewer parameters)
 - \Rightarrow more informative or intuitive representation

- We want a graph that captures as much of the structure (conditional independence relations) in P as possible

- G is a **minimal I-map** for P if it is an I-map for P, and also the removal of each edge from G renders it not an I-map.
 - Minimal I-map may still not capture $I(P)$
Perfect map

- G is a **D-map** for a distribution P if every conditional independence relation satisfied by the distribution is also in $I(G)$.

- G is a **perfect map** (**P-map**) for a distribution P is both an I-map and a D-map for that distribution.

Theorem: Not every distribution has a perfect map as a DAG.

- A distribution P with the independencies
 \[I(P) = \{A \perp C \mid \{B, D\}, \ B \perp D \mid \{A, C\}\} \]
 cannot be represented by any Bayesian network.
Perfect map

- A perfect map of a distribution is great, but may not exist for many distributions.

- A distribution \(P \) can have many P-map graphs (all of them are I-equivalent).

- A minimal I-map graph \(G \) for distribution \(P \) may be far from a guarantee that \(G \) contains all independencies in \(P \).
I-equivalence

- **Definition:** Two graphs G_1 and G_2 over a set of variables are I-equivalent if $I(G_1) = I(G_2)$

- Most graphs have many I-equivalent variants
I-equivalence

- If G_1 and G_2 have the same skeleton and the same set of immoralities (v-structures without direct edge between parents) then they are I-equivalent.
Bayesian networks: summary

- **Bayesian network** is a pair \((G, \text{CPDs})\) where \(G\) is a DAG and CPDs can be used to find a joint distribution \(P\) that factorizes over \(G\)
 - Each CPD is the conditional distribution \(P(X_i|Pa(X_i))\) associated to the graph node \(X_i\).

- We can show “causality”, “generative schemes”, “asymmetric influences”, etc., between variables via a Bayesian network

- We can find local and global independence relations from the graph structure via \(d\)-separation criteria