Outline

• **Introduction:**
 What is a Packet Switch?

• **Packet Lookup and Classification:**
 Where does a packet go next?

• **Switching Fabrics:**
 How does the packet get there?

• **Output Queuing:**
 What happens before the packet goes out?
Introduction

What is a Packet Switch?

• Basic Architectural Components
• Some Example Packet Switches
Basic Architectural Components

Datapath: per-packet processing

Control

Routing

Congestion Control

Admission Control

Policing

Switching

Output Scheduling

Reservation
Basic Architectural Components

Datapath: per-packet processing

1. Forwarding Table
 - Forwarding Decision

2. Interconnect

3. Output Scheduling

Copyright 1999. All Rights Reserved
Where high performance packet switches are used

- Carrier Class Core Router
- ATM Switch
- Frame Relay Switch

The Internet Core

Edge Router

Enterprise WAN access & Enterprise Campus Switch
Introduction

What is a Packet Switch?

• Basic Architectural Components
• Some Example Packet Switches
Ethernet Switch

Routing is done by caching what addresses are on what ports.

- Lookup frame DA in forwarding table.
 - If known, forward to correct port.
 - If unknown, broadcast to all ports.
- Learn SA of incoming frame.
- Forward frame to outgoing interface.
- Transmit frame onto link.
Routing algorithm initializes forwarding table.
• Match packet DA to a prefix in the forwarding table.
 – If match exists, forward to correct port.
 – If no match, drop packet.
• Decrement TTL, update header Cksum.
• Forward packet to outgoing interface.
• Transmit packet onto link.
Routing algorithm initializes fixed-size routing table (VC table).

- Lookup cell VCI/VPI in VC table.
- Replace old VCI/VPI with new.
- Forward cell to outgoing interface.
- Transmit cell onto link.
Outline

- **Introduction:**
 What is a Packet Switch?

- **Packet Lookup and Classification:**
 Where does a packet go next?

- **Switching Fabrics:**
 How does the packet get there?

- **Output Queuing:**
 What happens before the packet goes out?
Basic Architectural Components

Datapath: per-packet processing
Forwarding Decisions

- Bridges and Ethernet switches
 - Associative Lookup
 - Hashing
- IP Routers
 - Caching
 - CIDR
- ATM and MPLS switches
 - Direct Lookup
- Packet Classification
Bridges and Ethernet Switches

Associative Lookups

<table>
<thead>
<tr>
<th>Network Address</th>
<th>Associated Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Search Data

48

Advantages:
- Simple

Disadvantages:
- Slow
- High Power
- Small
- Expensive

** Associative Memory or CAM **

** Hit? **

** Address **

\(\log_2 N \)
Lookups Using Hashing

An example

Hashing Function
CRC-16

Memory

Search Data

Associated Data
Hit?
Address
$\log_2 N$

Indexed lists

Copyright 1999. All Rights Reserved
Forwarding Decisions

- Bridges and Ethernet switches
 - Associative Lookup
 - Hashing
- IP Routers
 - Caching
 - CIDR
- ATM and MPLS switches
 - Direct Lookup
- Packet Classification
IP Routers

Class-based addresses

IP Address Space

| Class A | Class B | Class C | D |

Routing Table:

Exact Match

212.17.9.4

Class A

Class B

Class C
IP Routers

CIDR

Class-based:

Classless:

128.9.0.0

128.9.16.14

142.12/19

Copyright 1999. All Rights Reserved
Most specific route = “longest matching prefix”
IP Routers

Metrics for Lookups

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>65/8</td>
<td>3</td>
</tr>
<tr>
<td>128.9/16/20</td>
<td>2</td>
</tr>
<tr>
<td>128.9/19/24</td>
<td>7</td>
</tr>
<tr>
<td>128.9.16/20</td>
<td>5</td>
</tr>
<tr>
<td>128.9.25/24</td>
<td>10</td>
</tr>
<tr>
<td>128.9.16/24</td>
<td>2</td>
</tr>
<tr>
<td>128.9.176/20</td>
<td>1</td>
</tr>
<tr>
<td>142.12/19</td>
<td>3</td>
</tr>
</tbody>
</table>

- Lookup time
- Storage space
- Update time
- Preprocessing time
IP Router

Lookup

IPv4 unicast destination address based lookup

- **Forwarding Table**
 - Destination | Next Hop
 - ---- | ----
 - ---- | ----
 - ---- | ----
 - ---- | ----

- **Next Hop Computation**
- **Forwarding Engine**
- **Incoming Packet**
- **Dstn Addr**
- **Next Hop**

Copyright 1999. All Rights Reserved
Trees and Tries

Binary Search Tree

Binary Search Trie

\[\log_2 N \]

\[N \text{ entries} \]
Trees and Tries

Multiway tries

16-ary Search Trie

```
  0000, ptr
  /       \
0000, 0  1111, ptr
   /       \
  1111, ptr
```

```
  0000, 0
  /       \
1111, ptr
   /       \
  0000, 0
     /       \
1111, ptr
```

Copyright 1999. All Rights Reserved
Forwarding Decisions

- Bridges and Ethernet switches
 - Associative Lookup
 - Hashing
- IP Routers
 - Caching
 - CIDR
- ATM and MPLS switches
 - Direct Lookup
- Packet Classification
ATM and MPLS Switches

Direct Lookup

VCI

Address

Memory

Data

(Port, VCI)
Outline

• Introduction:
 What is a Packet Switch?

• Packet Lookup and Classification:
 Where does a packet go next?

• Switching Fabrics:
 How does the packet get there?

• Output Queuing:
 What happens before the packet goes out?
Switching Fabrics

• Evolution of IP Routers
 • Output and Input Queueing
 • Output Queueing
 • Input Queueing
 • Other non-blocking fabrics
First-Generation IP Routers

Shared Backplane

CPU

Memory

Line Interface

CPU

Buffer Memory

DMA

Line Interface

MAC

DMA

Line Interface

MAC

DMA

Line Interface

MAC
Second-Generation IP Routers
Third-Generation Switches/Routers

- CPU Card
- Local Buffer Memory
- MAC
- Line Card
- CPU Card
- Line Card
- Local Buffer Memory
- MAC
Fourth-Generation Switches/Routers
Clustering and Multistage
Switching Fabrics

- Evolution of IP Routers

- Output and Input Queueing
 - Output Queueing
 - Input Queueing

- Other non-blocking fabrics
Basic Architectural Components

Datapath: per-packet processing
Interconnects

Two basic techniques

Input Queueing

Usually a non-blocking switch fabric (e.g. crossbar)

Output Queueing

Usually a fast bus
Interconnects
Output Queueing

Individual Output Queues

Centralized Shared Memory

Memory b/w = (N+1).R

Memory b/w = 2N.R
Output Queueing

How fast can we make centralized shared memory?

- 5ns per memory operation
- Two memory operations per packet
- Therefore, up to 160Gb/s
- In practice, closer to 80Gb/s
Interconnects

Input Queueing with Crossbar

Data In

Data Out

configuration

Memory b/w = 2R

Scheduler

Copyright 1999. All Rights Reserved
Input Queueing

Head of Line Blocking

Copyright 1999. All Rights Reserved
Head of Line Blocking
Input Queueing

Virtual output queues
Input Queues

Virtual Output Queues

[Diagram of input queues and virtual output queues]

[Graph showing delay vs. load]
Input Queueing

Memory b/w = 2R

Can be quite complex!
Switching Fabrics

- Evolution of IP Routers
- Output and Input Queueing
 - Output Queueing
 - Input Queueing
- Other non-blocking fabrics
Other Non-Blocking Fabrics

Clos Network
Other Non-Blocking Fabrics

Clos Network

Expansion factor required = 2-1/N (but still blocking for multicast)
Other Non-Blocking Fabrics

Self-Routing Networks
The Non-blocking Batcher Banyan Network

Batcher Sorter

Self-Routing Network

- Fabric can be used as scheduler.
- Batcher-Banyan network is blocking for multicast.