NetScope: Traffic Engineering for IP Networks

Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, and Jennifer Rexford
AT&T Labs-Research

Abstract
Managing large IP networks requires an understanding of the current traffic flows, routing policies, and network configuration. However, the state of the art for managing IP networks involves manual configuration of each IP router, and traffic engineering based on limited measurements. The networking industry is sorely lacking in software systems that a large Internet service provider can use to support traffic measurement and network modeling, the underpinnings of effective traffic engineering. This article describes the AT&T Labs NetScope, a unified set of software tools for managing the performance of IP backbone networks. The key idea behind NetScope is to generate global views of the network on the basis of configuration and usage data associated with the individual network elements. Having created an appropriate global view, we are able to infer and visualize the networkwide implications of local changes in traffic, configuration, and control. Using NetScope, a network provider can experiment with changes in network configuration in a simulated environment rather than in the operational network. In addition, the tool provides a sound framework for additional modules for network optimization and performance debugging. We demonstrate the capabilities of the tool through an example traffic engineering exercise of locating a heavily loaded link, identifying which traffic demands flow over the link, and changing the configuration of intradomain routing to reduce the congestion.

Traffic engineering aims to optimize network performance through three integrated activities: measuring traffic, modeling the network, and selecting mechanisms for controlling the traffic. Unfortunately, large Internet service providers (ISPs) lack the software systems and tools to support traffic measurement and network modeling, the underpinnings of effective traffic engineering. Seemingly simple questions about topology, traffic, and routing are surprisingly hard to answer in today's IP networks. A tremendous amount of work has gone into developing mechanisms and protocols for controlling traffic. Indeed, most of the work in the Internet Engineering Task Force (IETF) concerns the aspect of traffic engineering concerned with traffic control. By comparison, little work has been done to support traffic measurement and network modeling in operational networks. (Notable exceptions in the IETF include the IPPM and RTFM working groups.) Unless control mechanisms are driven by the appropriate measurements and understanding from well-tested models, the benefit of the controls will be limited.

This article describes the AT&T Labs NetScope, a unified set of software tools for traffic engineering in operational IP backbone networks. The key idea behind NetScope is to generate global views of the network on the basis of configuration and usage data associated with the individual network elements. Having created an appropriate global view, we are able to infer and visualize the networkwide implications of local changes in traffic, configuration, and control. NetScope provides an extensible and powerful platform for "what-if" traffic engineering investigations. Using NetScope, a network provider can experiment with changes in network configuration in a simulated environment rather than in the operational network. In addition, the tool provides a sound framework for additional modules for network optimization and performance debugging.

In order to illustrate some of the capabilities of NetScope, we focus on one compelling application: the problem of configuring intradomain routing based on the underlying network topology and traffic demands. This application drives the choice of an appropriate topological view, as well as the methods for traffic aggregation and routing. The task can be decomposed into several steps, each drawing heavily on the underlying modules and the flexible visualization environment. By joining topology and usage data, NetScope displays the utilization of each of the links and identifies the most heavily loaded link. Then NetScope's integrated view of traffic, topology, and routing enables us to identify which source-destination pairs are responsible for the congestion. Based on this
Figure 1. NetScope software architecture.

Information, we change the configuration of intradomain routing (by changing an Open Shortest Path First, OSPF, link weight) to direct some of these traffic demands away from the congested link. NetScope then reconfigures the routers and the resulting load on each link, providing an estimate of how the traffic would flow after the change.

Network Engineering Constraints

Before plunging into details, let us first consider the factors driving the need for better network engineering tools:

- **Service quality**: Increasingly, customers are demanding more stringent assurances with regards to performance, reliability, and security, in the form of service level agreements (SLAs). Customers are developing certification and ongoing testing procedures to ensure compliance with these SLAs. Applications are emerging, such as IP voice, that by their nature require high-quality data transport, as measured by delay, loss, and jitter. Since IP networks do not have explicit support for performance guarantees, network operators must carefully coordinate the operation of the individual network elements to realize customer SLAs.

- **Interdependent tunable parameters**: At present, vendors of network components provide ISPs with little or no low-level control over the basic mechanisms responsible for packet scheduling, buffer management, and path selection. Instead, backbone providers are forced to understand a large set of interconnected parameters, each to some degree affecting configuration and operation. To date, an ISP must manage its backbone network, and complicated peering relationships with neighboring providers, by tuning these knobs through a combination of intuition, testing, trial and error.

- **Network growth**: Individual backbone networks are growing rapidly in size, speed, and scope, and the industry is consolidating many disparate networks into larger integrated networks. As a result, network management functions that could once be handled by a small group of people, based on intuition and experimentation, must now be supported by effective traffic engineering tools that unite configuration and usage information from a variety of sources.

- **Traffic variability**: Internet traffic is complex. Offered loads between source-destination pairs are typically unknown. The distribution of IP traffic often fluctuates widely across time. This introduces significant complexity into network traffic engineering, without quieting customer demands for predictable communication performance. Detecting and diagnosing shifts in user demands, and the performance implications, require continual vigilance in network operations. Effective traffic engineering tools should support rapid identification of potential performance problems and a flexible environment for experimenting with possible solutions.

The complexity of managing an ISP network stems from some of the same fundamental issues responsible for the success and growth of the Internet. IP networks self-configure via a set of interrelated dynamic intradomain and interdomain protocols, guided by the local configurations of network elements. Thus, databases that are meant to hold authoritative descriptions of the network can diverge from the network reality, and small changes in one part of the network can have a significant impact on the flow of traffic.

NetScope Tool Overview

Managing the performance of a large ISP backbone network requires advanced tools to support operations, engineering, and design. We present background material on IP backbone networks and routing protocols. The key components of the NetScope toolkit are shown in Fig. 1:

- **Configuration**: The configuration module extracts a network-wide view that includes the topology, link capacities, customer addresses, peer connections, route configuration, and layer two connectivity. This information can be extracted from the configuration files of each router, as well as the IP forwarding tables and interdomain routing information, in an operational ISP network.

- **Measurement**: Traffic demands are determined based on detailed measurements at the periphery of the network, where traffic enters and leaves the backbone. These measurements can be aggregated up to the level that permits efficient and accurate modeling of intradomain and interdomain routing. The measurement module associates the traffic demands with the appropriate routers and links, drawing on information from the configuration module.

- **Data model**: A novel feature of NetScope is that it combines diverse network configuration information with diverse network measurements in a joint data model. Attributes of routers, links, and traffic demands are derived from the configuration and measurement modules. To facilitate experimentation with new network designs and projected traffic demands, the tool uses simple flat files as input to the data model.

- **Routing model**: The routing module combines the network topology and traffic demands by modeling how traffic would travel through the network, based on the intradomain and interdomain routing protocols. The model captures the selection of shortest paths to multihomed customers and peers, the splitting of traffic across multiple shortest path routes, and the multiplexing of layer three IP links on layer two trunks.

- **Visualization**: The visualization module displays the network's layer three and layer two connectivity, and provides convenient access to selected network configuration information and traffic statistics. The module supports coloring and sizing of routers and links based on a variety of statistics, and computes histograms, tables, and time-series plots. In addition, the environment allows changes to the network configuration to support 'what-if' experiments. The dotted line in Fig. 1 is very significant: the network topology and traffic statistics could be derived from a wide variety of sources. For example, the topology could be extracted from configuration files and forwarding tables, tracked in
real time by monitoring routing protocol traffic, or projected based on a proposed network design. Similarly, the traffic data could be derived from network measurements, customer subscriptions, or projected demands. We describe the data model and how it can be populated from configuration and measurement information. The routing and visualization modules are described later on.

NetScope is able to track changes while maintaining focus on the network features of interest to network architects and operators. All aspects of the network infrastructure can and must evolve. New routers, line cards, and versions of the element control software are regularly introduced. Basic architectural changes, such as the introduction of multi-protocol label switching (MPLS), occur less frequently. Higher-level modules of the software (above the line in Fig. 1) can and must evolve to accommodate basic architectural changes. The lower-level modules of the software (below the line in Fig. 1) are responsible for parsing the raw data associated with network elements and building higher-level abstractions, which are designed for simplicity and extensibility to accommodate frequent incremental changes in the network. Extending these modules to cope with new network features as they become of interest to network architects is a much easier task than building and maintaining a tool that aims to handle all possible combinations of features and policies.

In designing NetScope, we have introduced particular ways of considering network topology, interdomain and intradomain routing, and the offered traffic. The work described in this article focuses on deriving these models and defining their basic parameters. The tool does not support real-time updates to configuration data at present. Such changes do not occur very frequently, and hence it is reasonable to expect some amount of stability of the network between failures and reconfigurations. In fact, NetScope is designed to study precisely those kinds of events by evaluating how they would affect the flow of traffic in an ISP backbone. Unlike the network model, Internet traffic does fluctuate on a variety of timescales, with important implications for traffic engineering. Congestion control mechanisms, such as TCP, introduce variability on a small timescale of seconds [1], while variation in user demands introduces burstiness on multiple timescales [2]. However, on timescales beyond a few hours, fundamental shifts in user demands and changes in network topology introduce variability beyond statistical fluctuations. Offered load typically changes with the time of day, or day of the week, or in response to a network failure or reconfiguration. In the traffic engineering example in this article, we focus on this larger timescale.

Internet Backbone Networks

The Internet is divided into a collection of Autonomous Systems (ASs). Routing through the Internet depends on protocols for routing between ASs, called egress gateway protocols [3, 4], and protocols for routing within individual ASs, called interior gateway protocols [5]. Each AS is managed by an ISP, which operates a backbone network that connects to customers and other service providers. After describing the architecture of ISP backbone networks, we discuss intra- and interdomain routing.

Backbone Architecture

ISP backbone networks consist of a collection of IP routers and bidirectional layer three links, represented as nodes and edges in Fig. 2. Access links connect directly to customers. For example, an access link could connect to a modem bank for dialup users, a Web hosting complex, or any particular business or university campus. Multi-layered customers have two or more access links for higher capacity, load balancing, or fault tolerance. Peering links connect to neighboring service providers. A peering link could connect to a public Internet exchange point, or directly to a private peer or transit provider. An ISP often has multiple peering links to each neighboring provider, typically in different geographic locations. Backbone links connect routers inside the ISP backbone. Routers rely on input, via a configuration file, about the state of their hardware, the partitioning of resources (e.g., buffers), and which policies to apply to the forwarding decisions. A link is configured by entering interface definitions on all routers that are part of the link. The ISP has complete control over the configuration and operation of backbone links, by virtue of controlling the adjacent routers. Configuration of access and peering links depends on interaction with the customers and peers, respectively.

Each router terminates a mixture of access, peering, and backbone links. To simplify the discussion, we assume that all access links terminate at access routers (ARs) and all peering links at Internet gateway routers (IGRs), and all remaining routes are backbone routers (BRs) that only terminate backbone links. In an operational network, this split in functionality simplifies the requirements for each router. For example, an AR should provide high port density to connect to a large number of customers with various access speeds and technologies. On the other hand, a BR should provide high packet forwarding performance. Finally, routing protocols that control AS topology simplify the management of intra- and interdomain routing policies.

ISP backbones run on an underlying facility network. This introduces multiple layers of connectivity and capacity, which has implications for traffic engineering and reliability. The layer three link between two adjacent IP routers often corresponds to a lower layer link. For example, for packet over synchronous optical network (SONET) links, however, some networking technologies, such as fiber distributed data interface (FDDI) and synchronous transfer mode (ATM), introduce an intermediate switching fabric at layer two. For example, a single layer three link may correspond to a permanent virtual circuit (PVC) that traverses one or more ATM links via switches. In fact, multiple layer three links may share the capacity of a single layer two link. We refer to these layer two links as trunks, and the layer two switches as devices. The traffic on a trunk consists of the total load imparted by each layer three link which traverses that trunk. Similarly, a trunk (or device) failure causes the failure of each layer three link which traverses over that trunk (or device).
Routing Protocols

Within an AS, routing is determined by interior gateway protocols such as static routing, OSPF, IS-IS, and Routing Information Protocol (RIP). Static routes are configured manually in the router. An ISP typically uses static routes to direct traffic to subscribers who have a fixed set of IP addresses and do not participate in an interdomain routing protocol. Routing protocols such as OSPF and IS-IS are more advanced in the sense that routers exchange link state information and forward packets along shortest paths based on the sum of the link weights. Typically, customers and peers do not participate directly in these protocols with the ISP. As such, OSPF typically operates only over the backbone links. Since OSPF uses flooding to exchange link state information, the protocol does not scale to large ISP backbones. Therefore, ISPs typically introduce a routing hierarchy by dividing the backbone into multiple OSPF areas, each running a separate instance of the protocol.

Routing between ASs is controlled by an exterior gateway protocol, Border Gateway Protocol (BGP). BGP is a path-vector protocol that distributes routing information between routers belonging to different autonomous systems. These routes are BGP peers that advertise and withdraw routing information about particular network addresses. A network address represents a set of contiguous IP addresses by a 32-bit number and a prefix (mask) length; for example, the network address 135.207.119.0/24 has a 24-bit mask that specifies a block of 256 IP addresses. A route advertisement includes a list of the ASes in the path to a particular network address, along with other path attributes. For example,

9.2.0.0/16 192.205.31.30 0 1740 1673 1677 1675

describes a route to network address 9.2.0.0/16 going through a sequence of autonomous systems starting with the peer AS 1740. The path has a metric of 0, and 192.205.31.30 is the loopback address of the associated IGR. Upon receiving a BGP advertisement, an ISP can apply local policies to decide whether to use the route. These decisions can be based on a variety of factors, such as the AS path length and local preferences for particular downstream providers. After deciding to use a route, the ISP must also decide whether or not to forward the advertisement to neighboring ASes (after adding itself to the AS path). Limiting the distribution of advertisements allows the ISP to influence what traffic enters the network and where.

Ultimately, the router determines the path along which to forward an individual packet from the interaction of the various routing protocols. For example, the static routes specified for a customer on a particular router indicate which access link(s) should ultimately carry this traffic. Other routers in the backbone must learn that they should route traffic destined for these customers addresses to the corresponding access link(s). Similarly, the routers need to learn which peering link(s) should be used to reach each network address in the rest of the Internet. Within an ISP backbone, this information is typically distributed via internal BGP (IBGP) or the interdomain routing protocol. By combining this information with the shortest paths computed by OSPF or IS-IS, each router can determine the appropriate outgoing link(s) for each network address. The mapping from network address to outgoing link(s) is stored in a forwarding table. For example, the entry

135.207.0/16 12.126.223.194 Serial2/0/0/26

corresponds to a link using serial2/0/0/26, with next hop 12.126.223.194 to forward packets toward the network address 135.207.0/16. When a packet arrives, the router performs a longest prefix match on the destination address to find the appropriate forwarding table entry for the packet. Then the router forwards the packet to the appropriate outgoing link; in some cases, the forwarding entry has multiple outgoing links, and the router can pick a single link from this set. The next-hop router repeats the process, forwarding the packet closer to its destination.

The Data Model

Traffic engineering requires a networkwide view of the underlying topology and an estimate of the offered traffic load. This section presents a data model that allows us to combine network topology with traffic statistics in one data structure. We briefly discuss our approach to extracting this information from an operational network.

The Topology Model

Our model of ISP backbones includes objects for routers, layer three links, devices, and trunks; the latter two were defined earlier. The routers and layer three links are connected in a topology such as that shown in Fig. 2. Layer three links have several attributes that play an important role in traffic engineering. Each unidirectional link includes general information about the router originating the link, the name of the router card, the IP address of the interface, and a textual description of its purpose, its capacity, and its OSPF weight. The latter two are especially important for the routing model. Some attributes are associated with both directions of a link. For example, each bidirectional link can be classified as an access, backbone, or peering link. Backbone links also belong to a particular OSPF area, which must be the same for both unidirectional links. Peering links are associated with a particular BGP peer, identified by its AS number and annotated by the IP address of the BGP peer in the remote domain.

Routers include the router name, loopback IP address of the router, type of router (AR, BR, IGR), and geographic location of the router in terms of city and latitude/longitude. In addition, each router includes information about links which it originates. The device attributes include the name and location of the device, and a list of trunks that originate at the device. Trunks describe the connectivity between routers and devices, and include the information about which links traverse a given trunk. Consequently, links have an additional attribute that lists the trunks they traverse (if any), as well as the routers on either end of the link.

The model is very general, and its objects can be populated in a number of different ways, such as modifying an existing data model, constructing an artificial network, or extracting the information from the real network. Our approach is to extract the information from router configuration files. The topology model is populated by netdb, a network configuration debugger and database that also supports interactive queries and consistency checking [6]. Netdb processes the configuration files in two steps. The first step resolves information within a single file such as interfaces, their IP addresses, customer names, link speeds, OSPF weight, and OSPF area. The second step unifies information from multiple routers into a single topology via IP address information. For example, a link is identified via an IP prefix. If it has two or more interface entries, we classify it as a backbone link. A link with only one IP address entry is either an access or peering link. For a peering link, the interface participates in a BGP peering session to a known peer. If a link is not a peering link, it is an access link.
Traffic Demands

Effective traffic engineering requires not just a view of the topology but also an accurate estimate of the offered load between various points in the backbone. These estimates could be derived from customer subscriptions, traffic projections, or actual measurements. Ideally, we would like to define a demand in terms of the volume of load between two edge links (e.g., from an access link to a peering link). However, many customers connect to the backbone via multiple access links, and many external addresses are reachable via multiple peering links. The traffic destined for a customer could flow through different access links depending on the configuration of intradomain routing. Hence, traffic from the external Internet to a customer should be modeled as a demand from a peering link to a set of access links. Similarly, the traffic introduced by a customer should be modeled as a demand from an access link to a set of peering links. A set of peering links (access links) can be represented by a logical node X_i (Y_j) as shown in Fig. 3. We synonymously use X_i (Y_j) to refer to either the logical nodes or the set of links these nodes represent. In this article we focus on demands from a peer link to a set of access links, or from an access link to a set of peering links, rather than traffic between access links or between peering links.

Determining the traffic demands in an operational network requires identifying the sets of links (X_i and Y_j) and the associated traffic volumes. The sets of access links Y_j can be determined based on the forwarding table at each access link. Each table entry indicates a customer prefix (IP address and mask length) and the card name of the outgoing link. The card name also appears in the router configuration file, allowing the prefix to be associated with the appropriate link. By repeating this process across all of the ARs, we can determine the set of access links associated with each customer prefix. Similarly, each external prefix can be associated with a set of peering links X_i based on information in the BGP routing tables. Each entry in the BGP routing table includes a prefix, an AS path, and an IGR loopback address. After identifying the IGR, it is possible to identify the appropriate peering link(s) at that router based on the next-hop AS number. The loopback address of each IGR and the next-hop AS number of each peering link can be extracted from the router configuration file.

Finally, we associate each demand with a volume of traffic. In our work on traffic engineering, we initially focus on measured traffic demands, rather than subscribed or projected loads. In particular, we consider flow-level measurements at the network edge, where traffic enters or leaves the network. A flow consists of a set of packets that match in all of the main IP and TCP/UDP header fields, such as source and destination IP addresses, protocol, port numbers, and type of service bits, and arrive close together in time. Each measurement record includes information about the traffic endpoints, IP and TCP/UDP header fields, the number of packets and bytes in the flow, and the start and finish time of the flow; such information is available, for example, from Cisco's Netflow feature [7]. The source and destination IP addresses of the flow are associated with the appropriate prefixes, and matched to the corresponding set X_i or Y_j. Consequently, we are able to compute comprehensive information about traffic demands by aggregating the flow level information to the level of X_i and Y_j.

Routing

Another key feature of NetScope is that it combines the network model and traffic measurements with an accurate model of path selection. Specifically, NetScope's routing module determines the path(s) chosen by OSPF for each traffic demand, and the load impacted on each link as the traffic flows through the network. The routing module captures the selection of shortest paths to/from multihomed customers and peers, the splitting of traffic across multiple shortest path routes, and the multiplexing of layer three links over layer two trunks. These capabilities in NetScope allow a user to explore the impact of changes in traffic demands or underlying network topology.

Path Selection to Approximate OSPF Routing

The OSPF protocol defines how routers within an area exchange link state information and compute shortest paths based on the sum of the link weights. The link weights are static and are typically configured based on the link capacity, physical distance, and some notion of the expected traffic load. The chosen paths do not change unless a link or router failure occurs, or the OSPF parameters are reconfigured. These are rare events, particularly for the backbone links that participate in the routing protocol. As such, NetScope considers a single instance of the network topology and OSPF configuration, and does not simulate the details of the OSPF protocol, such as the flooding of link state advertisements or the exchange of “hullo” messages. Performing the path selection computation inside the tool, rather than using the forwarding tables or traceroute results directly, facilitates experimentation with alternate OSPF configurations and different topologies.

When all of the backbone links reside in a single OSPF area, path selection simply involves computing the shortest paths between each pair of routers based on the link weights. In a hierarchical network, traffic between two routers in the same area follows a shortest path within the area, even if the network has a shorter path that involves links in other areas. When traffic must travel between routers in different areas, the path depends on how much information each area has about its neighbors. Currently, our routing module assumes that the network does not summarize routing information at area boundaries. In the absence of route summarization, each border router reports the cost of the shortest path to each of the other routers in the area, and the traffic between routers in different areas simply follows a shortest path without regard to the area boundaries. The routes are computed using Dijkstra's shortest path first algorithm.
OSPF Tie Breaking

Path selection becomes more complex when there are **multiple shortest paths** between a pair of routers. Such ties arise very naturally when the network topology has parallel links between adjacent routers for additional capacity. Ties also surface when many of the links in the network have similar weights. This is sometimes done intentionally to increase the effective capacity between two endpoints. The presence of multiple shortest paths allows for load balancing of the traffic between the endpoints. This is achieved by allowing the IP forwarding table to have multiple outgoing links associated with a single destination prefix. Rather than alternating between these links at the packet level, routers typically attempt to forward packets for the same source-destination pair along a single path; this reduces the likelihood that packets from the same TCP connection arrive out of order at the receiver. Load balancing is typically achieved by performing a hash function on the source and destination IP addresses of each packet. The value of the hash function determines which outgoing link should carry the packet.

In theory, the details of the tie-breaking function could be modeled in the NetScope tool. However, this would significantly complicate the path selection computation, and would require computing traffic demands at a significantly finer level of granularity. In addition, the details of the hashing function and how the outputs of the hash function map to particular outgoing links are not specified by the OSPF protocol and, as such, depend on the vendor’s implementation. Fortunately, these details are usually not important. The hash function is designed to support an even splitting of traffic across multiple outgoing links, especially for backbone links that carry a diverse mixture of traffic with different source and destination addresses. As such, our routing model splits traffic evenly across each of the outgoing links along a shortest path. For example, if a router has four outgoing links on shortest paths, each link would carry 25 percent of the traffic. The division of traffic is recursive, with the downstream routers dividing the traffic across each of their outgoing links, as shown in Fig. 4.

Multithreaded Customers and Peers

As discussed earlier, traffic from a customer is represented as a demand from an access link to a set of peering links \((X_i)\). Similarly, the traffic to a customer is represented as a demand from a peering link (where the traffic was measured) to a set of access links \((Y_i)\). The choice of a particular peering link (access link) from the set \(X_i(Y_i)\) depends on OSPF routing. A set of links can be represented as a logical node, as shown in Fig. 3. Traffic travels to the closest link along a shortest path. The chosen link, as well as the chosen path, depend on the link weights. We model the selection of the shortest path to the closest node by assuming that the logical links all have the same OSPF weight (e.g., a nominal weight of 1). Under this assumption, a shortest path to a logical node \(X_i(Y_i)\) travels through the appropriate peering link (access link).

In the end, the routing module operates on a set of demands, each traveling from one peering link (access link) to a set of access links (peering links). The module computes the set of shortest path routes based on the topology and OSPF configuration, and determines how the demand splits across the multiple paths. Replicating this process for each demand results in an estimate of the load imparted on each link. Then the routing module determines the load on each trunk (layer two link) by summing across the associated (layer three) links.

The NetScope visualization environment provides many ways to explore the data associated with an IP backbone network, and the ability to perform what-if experiments. This section gives a brief overview of the visualization environment, followed by a demonstration of using the tool. The demonstration addresses the traffic engineering task of reducing the load on the network’s most utilized link using an artificially constructed topology and set of traffic demands.

Visualization

The NetScope visualization environment provides many ways to explore the data associated with an IP backbone network, and the ability to perform what-if experiments. This section gives a brief overview of the visualization environment, followed by a demonstration of using the tool. The demonstration addresses the traffic engineering task of reducing the load on the network’s most utilized link using an artificially constructed topology and set of traffic demands.

Objects

The NetScope data model is decomposed into a set of objects (e.g., objects representing each router and link). We associate a list of attributes with each object, as discussed earlier. The visualization environment provides a way to examine each object and see all of its attributes. For example, Fig. 5 shows the link panel. The attributes displayed are for the link underlined in the upper left, namely the interface POS1/0/0 from a router in Dallas, Texas, which terminates in a router in Los Angeles, California. This link is implemented via packet-over-SONET technology and therefore has only one associated physical link (link itself). NetScope allows for easy navigation between the objects. For example, starting at a link, it is straightforward to find the routers where this link terminates. Starting at a router, it is easy to find the links that terminate there.

Statistics

NetScope maintains statistical information associated with objects. For example, a link utilization statistic is a percentage associated with each link. There is no restriction on how many statistics can be associated with an object type. For example, it is possible to keep link utilization on an hourly basis for a full week. Statistics can be static (read from a file, or computed once) or dynamic (automatically recomputed as needed). NetScope has many ways of displaying statistics. For objects that have graphical representations such as links or nodes, NetScope can make the size or color of the object be proportional to the value of the statistic, providing a visual representation of the statistic. The first step of our traffic engineering task is to visualize the utilization.

Figure 4. Traffic splitting across multiple shortest paths.
The statistics window also displays summary statistics for each link statistic. Under the group labeled Min, Max, and Ave, we see the minimum, maximum, and mean value (over all links) for each displayed statistic (e.g., the Ave is 8.83 percent).

NetScope has the notion of a current object for each type. An object becomes the current object when either it is selected or the mouse is moved on top of it. The column labeled Current shows the utilization value for that link, with the name of the current link displayed below the menu bar. In the statistics window in Fig. 6, we see that the current link is the interface POS3/0/0 on a backbone router in Dallas, and that the utilization on that link is 29.27 percent. From this window the user can also produce other views of statistics, such as histograms (showing how many links have utilization that falls into a certain range) or tables. It is also possible to correlate different statistics for the same object type. This can be done either via a scatter plot or, for example, by using the color of the links to visualize highly utilized links and their thickness to visualize links with high delay.

Locating Heavily Loaded Links

To finish the first step of our example traffic engineering task, the NetScope user needs to identify the most heavily loaded link. NetScope has powerful search tools that allow the user to perform complex queries on all objects via a find panel, as shown in the example in Fig. 6. Given that the maximum utilization for our example is 67.59 percent, the user asked the tool to locate all links with a utilization value above 60 percent. By passing the mouse over each link listed here one can easily find the link with the highest utilization. (There are also other ways to find this link, such as a histogram or table.) In this case we find that the link with the highest utilization is a cross-country link from Washington, D.C. to San Francisco, California.

The query allowed in the find panel are very general and can refer to arbitrary attributes and statistics. After locating an interesting subset of data, NetScope allows the user to restrict the current view to only that subset. For example, if the user was only interested in the backbone links, the user could find that set of links and then make it the active set by clicking on the Make Active button. Changing the active set automatically causes several changes. The display changes to show only those links that are now active. The minimum, maximum, and average are recomputed over the new active set. Finally, the coloring and sizing of links (if turned on) will change to reflect the new range of values.

Traffic on a Link

Continuing with the traffic engineering example, we next need to identify which traffic demands contribute to the load of the highly utilized link. The link carries traffic for a collection of different demands. NetScope’s data and routing models allow us to see the source and sink tree of all traffic demands using the link. Each object has a menu associated with it, with options which apply to that object. This menu includes some general object operations such as set information, select, zoom, and operations specific to the object type. The link menu, for example, includes the option of finding all traffic demands with shortest path routes that include this link. This query is executed via the demand find panel. By using the Make Active button in this window, we restrict NetScope’s view to this set of demands. The statistics and their graphical...
visualization (e.g., the colors of the links) will be adjusted automatically.

To focus our attention on the chosen demands, we activate only the links that carry one or more of these demands. The resulting view is shown in Fig. 7. At first glance, it may seem confusing that the resulting graph is not a tree. However, OSPF tie breaking introduces multiple paths for each demand; hence, we get a directed acyclic graph instead of a tree. What appears to be a cycle in the part of the topology shown in Fig. 7 are directed links pointing either to San Francisco or from Washington, D.C. To illustrate the impact of OSPF tie breaking on route selection, Fig. 7 also shows how one such demand is routed through the network. This route from Washington, D.C. to Seattle, Washington, uses three paths through the network, one of them using the heavily utilized link from Washington, D.C. to San Francisco followed by the link from San Francisco to Seattle. The other two routes use the link from Washington, D.C. to Chicago, Illinois, and then the two parallel links between Chicago and Seattle.

Charging Routes

The obvious approach to alleviate the congestion on the highest utilized link, other than increasing the capacity of the link, is to increase the OSPF weight of the link in order to change the routing. This will tend to move traffic from that link to other links. NetScope allows the user to modify OSPF weights. Upon changing the OSPF weights, NetScope recalculates all routes for all active traffic demands. The tool then updates all statistics based on the traffic, including link load and utilization. In order to compare alternate settings of OSPF weights, NetScope maintains two different sets of weights, one that can be manipulated and one that acts as an anchor.

Figure 8 shows the network utilization before increasing the OSPF weight of the highest utilized link and after changing the weight. To simplify the visualization we use a different coloring scheme in this and subsequent figures. Links with low utilization (at most 30 percent) are green; links with medium utilization (between 30 percent and 60 percent) yellow; links with high utilization (over 60 percent) red. Before the change the most utilized link had a utilization of 67.59 percent. Changing the OSPF weight reduces the link utilization to 50.69 percent. Unfortunately, a link from Washington, D.C. to Chicago, which previously had fairly low utilization, now has 69.70 percent utilization. It is possible to explain this by going back to Fig. 7. By increasing the OSPF weight on the link between Washington, D.C. and San Francisco, the path from Washington, D.C. to San Francisco to Seattle is removed from the path set for the demand from Washington, D.C. to Seattle. The same is true for the demand from Washington, D.C. to Dallas. The implication is that the traffic which used to flow on the link between Washington, D.C. and San Francisco now traverses the link from Washington, D.C. to Chicago. This illustrates one of the difficulties in managing an IP network: a small local change can have significant global impact.

Based on this understanding of the traffic pattern, one might want to decrease an OSPF weight on a different link so that it will attract more traffic. From the above discus-

Figure 8. Increasing OSPF weight to try to move traffic off a link: before (left) and after (right) pictures.
flows regulated by congestion control mechanisms such as TCP may be able to transmit packets more aggressively if a routing change alleviates congestion on bottlenecked links. In addition, we are exploring the use of NetScope for traffic engineering and admission control for the mixture of traffic classes proposed for differentiated services. We believe that the NetScope approach to combining topology, traffic, and routing can serve as a general underpinning for managing the performance of large ISP networks.

Acknowledgments

Several of our colleagues at AT&T Labs and in AT&T's Internet Services and Operations groups have provided valuable feedback on our work, for which we are very grateful. We would like to thank Dan Hengsorn, Dave Hengsorn, and Fred True for helping us access and understand the network measurement and configuration data. Thanks also to Youngmin Yoo and Michael Merritt for their comments on an earlier draft of the article.

References

Biographies

ANNA FRIEDMANN (amf@research.att.com) received a B.A. degree in mathematics from Brandeis College in 1978, and M.S. and Ph.D. degrees in computer science from the University of Wisconsin, Madison, in 1981 and 1983, respectively. In 1995 she was a member of the Networking and Distributed Systems Center at AT&T Labs-Research, Florham Park, New Jersey. She is currently a professor in the Computer Science Department at the University of Pennsylvania, Philadelphia. Her research interests include Internet measurement, traffic engineering, and network performance metrics.

AARON GREENBERG (agreenberg@research.att.com) received a B.A. degree in mathematics from Dartmouth College in 1978, and M.S. and Ph.D. degrees in computer science from the University of Wisconsin, Madison, in 1981 and 1983, respectively. He joined AT&T Bell Labs Mathematics Research Center in 1983, and became a department head in the Network Services Research Center in 1993. He now heads the Network Mathematics Research Department, a group of researchers who measure, model, and optimize networks, in the Networking and Distributed Systems Center at AT&T Labs-Research. His research interests include Internet traffic measurement, modeling and engineering, and policy-based networking. In collaboration with several others at AT&T Labs, he is developing a unified toolkit to manage IP networks.

CARSON LUNO (luno@research.att.com) received his Bachelor's degree in computer science from the University of Arizona in 1966, and his Ph.D. degree in computer science from the University of Chicago, Illinois, in 1991. He is now a member of the Networking and Distributed Systems Center at AT&T Labs-Research, Florham Park, New Jersey. His research interests include network design, routing, and visualization.

NICK RICHARDSON (nrichardson@research.att.com) received a B.A. in mathematics from the University of Chicago and a Ph.D. in computer science from Yale University. He is currently a member of the Networking and Distributed Systems Center at AT&T Labs-Research, Florham Park, New Jersey. His research interests include algorithm design, network design, and visualization.

JENNIFER REICH (reich@research.att.com) received her B.S.E. degree in electrical engineering from Princeton University in 1991, and her M.S.E. and Ph.D. degrees in computer science and electrical engineering from the University of Michigan in 1993 and 1996, respectively. She is now a member of the Networking and Distributed Systems Center at AT&T Labs-Research, Florham Park, New Jersey. Her research interests include routing protocols, Internet traffic characterization, and multimedia streaming.